首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this work was to study the miscibility and phase‐separation temperatures of poly(styrene‐co‐maleic anhydride) (SMA)/poly(vinyl methyl ether) (PVME) and SMA/poly(methyl methacrylate) (PMMA) blends with differential scanning calorimetry and small‐angle light scattering techniques. We focused on the effect of SMA partial imidization with aniline on the miscibility and phase‐separation temperatures of these blends. The SMA imidization reaction led to a partially imidized styrene N‐phenyl succinimide copolymer (SMI) with a degree of conversion of 49% and a decomposition temperature higher than that of SMA by about 20°C. We observed that both SMI/PVME and SMI/PMMA blends had lower critical solution temperature behavior. The imidization of SMA increased the phase‐separation temperature of the SMA/PVME blend and decreased that of the SMA/PMMA blend. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
Miscibility, phase diagrams and morphology of poly(ε‐caprolactone) (PCL)/poly(benzyl methacrylate) (PBzMA)/poly(styrene‐co‐acrylonitrile) (SAN) ternary blends were investigated by differential scanning calorimetry (DSC), optical microscopy (OM), and scanning electron microscopy (SEM). The miscibility window of PCL/PBzMA/SAN ternary blends is influenced by the acrylonitrile (AN) content in the SAN copolymers. At ambient temperature, the ternary polymer blend is completely miscible within a closed‐loop miscibility window. DSC showed only one glass transition temperature (Tg) for PCL/PBzMA/SAN‐17 and PCL/PBzMA/SAN‐25 ternary blends; furthermore, OM and SEM results showed that PCL/PBzMA/SAN‐17 and PCL/PBzMA/SAN‐25 were homogeneous for any composition of the ternary phase diagram. Hence, it demonstrated that miscibility exists for PCL/PBzMA/SAN‐17 and PCL/PBzMA/SAN‐25 ternary blends, but that the ternary system becomes phase‐separated outside these AN contents. Copyright © 2003 Society of Chemical Industry  相似文献   

3.
The nonlinear phase‐separation behavior of poly(methyl methacrylate)/poly(styrene‐co‐maleic anhydride) (PMMA/SMA) blends over wide appropriate temperature and heating rate ranges was studied using time‐resolved small‐angle laser light scattering. During the non‐isothermal process, a quantitative logarithm function was established to describe the relationship between cloud point (Tc) and heating rate (k) as given by Tc = Alnk + T0, in which the parameter A, reflecting the heating rate dependence, is much different for different compositions due to phase‐separation rate and activation energy difference. For the isothermal phase‐separation process, an Arrhenius‐like equation was successfully applied to describe the temperature dependence of the apparent diffusion coefficient (Dapp) and the relaxation time (τ) of the early stage as well as the late stage of spinodal decomposition (SD) of PMMA/SMA blends. Based on the successful application of the Arrhenius‐like equation, the related activation energies could be obtained from Dapp and τ of the early and late stages of SD, respectively. In addition, these results indicate that it is possible to predict the temperature dependence of the phase‐separation behavior of binary polymer mixtures during isothermal annealing over a range of 100 °C above the glass transition temperature using the Arrhenius‐like equation. © 2012 Society of Chemical Industry  相似文献   

4.
The phase behavior and kinetics of phase separation for blends of the random copolymer poly(styrene‐co‐methyl methacrylate) (SMMA) and poly(styrene‐co‐acrylonitrile) (SAN) were studied by using small‐angle laser light scattering. The partially miscible SMMA/SAN blends undergo spinodal decomposition (SD) and subsequent domain coarsening when quenched inside the unstable region. For blends of SMMA and SAN, the early stages of the phase separation process could be observed, unlike a number of other blends where the earliest stages are not visible by light scattering. The process was described in terms of the Cahn–Hilliard linear theory. Subsequently, a coarsening process was detected and the time evolution of qm at the beginning of the late stages of phase separation followed the relationship qmt?1/3, corresponding to an evaporation–condensation mechanism. Self‐similar growth of the phase‐separated structures at different timescales was observed for the late stage. Copyright © 2004 Society of Chemical Industry  相似文献   

5.
The miscibility was investigated in blends of poly(methyl methacrylate) (PMMA) and styrene‐acrylonitrile (SAN) copolymers with different acrylonitrile (AN) contents. The 50/50 wt % blends of PMMA with the SAN copolymers containing 5, 35, and 50 wt % of AN were immiscible, while the blend with copolymer containing 25 wt % of AN was miscible. The morphologies of PMMA/SAN blends were characterized by virtue of scanning electron microscopy and transmission electron microscopy. It was found that the miscibility of PMMA/SAN blends were in consistence with the morphologies observed. Moreover, the different morphologies in blends of PMMA and SAN were also observed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
Poly(vinylidene chloride‐co‐acrylonitrile) (Saran F), poly(hydroxy ether of bisphenol A) (phenoxy), poly(styrene‐co‐acrylonitrile) (PSAN), and poly(vinyl phenol) (PVPh) all have the same characteristic: miscibility with atactic poly(methyl methacrylate) (aPMMA). However, the miscibility of Saran F with the other polymer (phenoxy, PSAN, or PVPh) is not guaranteed and was thus investigated. Saran F was found to be miscible only with PSAN but not miscible with phenoxy and PVPh. Because Saran F and PVPh are not miscible, although they are both miscible with aPMMA, aPMMA can thus be used as a potential cosolvent to homogenize PVPh/Saran F. The second part of this report focused on the miscibility of a ternary blend consisting of Saran F, PVPh, and aPMMA to investigate the cosolvent effect of aPMMA. Factors affecting the miscibility were studied. The established phase diagram indicated that the ternary blends with high PVPh/Saran F weight ratio were found to be mostly immiscible. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3068–3073, 2004  相似文献   

7.
Isotactic, atactic, and syndiotactic poly(methyl methacrylates) (PMMAs) (designated as iPMMA, aPMMA, and sPMMA) were mixed with poly(styrene‐cop‐hydroxystyrene) (abbreviated as PHS) containing 15 mol % of hydroxystyrene separately in 2‐butanone to make three polymer blend systems. Differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy were used to study the miscibility of these blends. The three polymer blends were found to be miscible, because all the prepared films were transparent and there was a single glass transition temperature (Tg) for each composition of the polymers. Tg elevation (above the additivity rule) is observed in all the three PMMA/PHS blends mainly because of hydrogen bonding. If less effective hydrogen bonding based on the FTIR evidence is assumed to infer less exothermic mixing, sPMMA may not be miscible with PHS over a broader range of conditions as iPMMA and aPMMA. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 431–440, 1999  相似文献   

8.
Differential scanning calorimetry and inverse gas chromatography have been used to investigate the miscibility behaviour of blends of poly(ethyl methacrylate) (PEMA) with styrene–cinnamic acid statistical copolymers PSCA5, PSCA8, PSCA23 having compositions of, respectively, 5, 8 and 23 mol% of cinnamic acid. Several probes with different chemical nature and polarity have been used to determine the polymer–solute and polymer–polymer interaction parameters. DSC and CPGI measurements indicate that poly(ethyl methacrylate) is miscible with each poly[(styrene)‐co‐(cinnamic acid)] copolymer as established from the observation of a single composition‐dependent glass transition temperature. This deduction is corroborated by the IGC data; comparison of the experimental retention volume of the blend with the algebraic average retention volumes of the pure components, together with negative values of the apparent polymer–polymer interaction parameter, establish the miscibility of the studied systems. Furthermore, the polymer–polymer interaction parameters are found to show marked probe dependence; this is discussed in terms of the Δχ effect. As indicated by the variation of the glass transition temperature with blend composition, the application of the Kwei and the Schneider approaches to the calorimetric results suggests the occurrence of strong specific interactions within the blends; the strength of these intermolecular interactions increases with the cinnamic acid content in the PSCA copolymer. © 2001 Society of Chemical Industry  相似文献   

9.
Morphologies of polymer blends based on polystyrene‐b‐ polybutadiene‐b ‐poly(methyl methacrylate) (SBM) triblock copolymer were predicted, adopting the phase diagram proposed by Stadler and co‐workers for neat SBM block copolymer, and were experimentally proved using atomic force microscopy. All investigated polymer blends based on SBM triblock copolymer modified with polystyrene (PS) and/or poly(methyl methacrylate) (PMMA) homopolymers showed the expected nanostructures. For polymer blends of symmetric SBM‐1 triblock copolymer with PS homopolymer, the cylinders in cylinders core?shell morphology and the perforated lamellae morphology were obtained. Moreover, modifying the same SBM‐1 triblock copolymer with both PS and PMMA homopolymers the cylinders at cylinders morphology was reached. The predictions for morphologies of blends based on asymmetric SBM‐2 triblock copolymer were also confirmed experimentally, visualizing a spheres over spheres structure. This work presents an easy way of using PS and/or PMMA homopolymers for preparing nanostructured polymer blends based on SBM triblock copolymers with desired morphologies, similar to those of neat SBM block copolymers. © 2017 Society of Chemical Industry  相似文献   

10.
Four binary polymer blends containing poly [ethylene‐co‐(acrylic acid)] (PEAA) as one component, and poly(4‐vinyl phenol‐co‐2‐hydroxy ethyl methacrylate) (P4VPh‐co‐2HEMA) or poly(2‐ethyl‐2‐oxazoline) (PEOx) or poly(vinyl acetate‐co‐vinyl alcohol) (PVAc‐co‐VA) or poly (vinylpyrrolidone‐co‐vinyl acetate) (PVP‐co‐VAc) as the other component were prepared and used as a matrix of a series of composite materials. These binary mixtures were either partially or completely miscible within the composition range studied and were characterized by differential scanning calorimetry (DSC) and Fourier transformed infrared spectroscopy (FTIR). Carbon nanotubes (CNTs) were prepared by a thermal treatment of polyester synthesized through the chemical reaction between ethylene glycol and citric acid over an alumina boat. High resolution transmission electron microscopy (HRTEM) was used to characterize the synthesized CNTs. Films of composite materials containing CNTs were obtained after evaporation of the solvent used to prepare solutions of the four types of binary polymer blends. Young's moduli of the composites were obtained by thermomechanical analysis at room temperature. Only one glass transition temperature was detected for several compositions on both binary blends and the composite material matrices. Evidence of hydrogen bond formation was recorded for both miscible blends and composite materials. The degree of crystallinity and Young's moduli of the CNT‐polymer composites increased compared to the single polymer blends. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

11.
The molecular dynamics and miscibility of highly interacting binary polymer blends of poly(methyl methacrylate) (PMMA) and poly[styrene‐co‐(maleic anhydride)] random copolymer with 8 wt% maleic anhydride content (SMA) were investigated as a function of composition over a wide range of frequency (10?2–106 Hz) at different constant temperatures (30–160 °C). Only one common glass relaxation process (α‐process) was detected for all measured blends, and its dynamics and broadness were found to be composition dependent. The existence of only one common α‐relaxation process located at a temperature range between those of the pure polymer components indicated the miscibility of the two polymer components over the entire range of composition. The miscibility was also confirmed by measuring the glass transition temperatures of the blends, Tg, using differential scanning calorimetry. The composition dependence of Tg of the blends showed a positive deviation from the linear mixing rule and well described by the Gordon–Taylor–Kwei equation. The relaxation spectrum of the blends was resolved into α‐ and β‐relaxation processes using the Havriliake–Negami (HN) equation and ionic conductivity. The dielectric relaxation parameters obtained from HN analysis, such as broadness of relaxation processes, maximum frequency, fmax, and dielectric strength, Δ? (for the α‐ and β‐relaxation processes), were found to be blend composition dependent. The kinetics of the α‐relaxation process of the blends were well described by the Meander model, while an Arrhenius‐type equation was used to evaluate the molecular dynamics of the β‐relaxation process. Blending of PMMA and SMA was found to have a considerable effect on the kinetics and broadness of the β‐relaxation process of PMMA, indicating that the strong interaction and miscibility between the two polymer components could effectively change the local environment of each component in the blend. © 2013 Society of Chemical Industry  相似文献   

12.
Poly(styrene‐co‐methacrylic acid) (PSMA) and poly(styrene‐co‐4‐vinylpyridine) (PS4VP) of different compositions were prepared and characterized. The phase behavior of these copolymers as binary PSMA/PS4VP mixtures or with poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) as PPO/PSMA or PPO/PS4VP and PPO/PSMA/PS4VP ternary blends was investigated by differential scanning calorimetry (DSC). This study showed that PPO was miscible with PS4VP containing up to 15 mol % 4‐vinylpyridine (4VP) but immiscible with PS4VP‐30 (where the number following the hyphen refers to the percentage 4VP in the polymer) and PSMA‐20 (where the number following the hyphen refers to the percentage methacrylic acid in the polymer) over the entire composition range. To examine the morphology of the immiscible blends, scanning electron microscopy was used. Because of the hydrogen‐bonding specific interactions that occurred between the carboxylic groups of PSMA and the pyridine groups of PS4VP, chloroform solutions of PSMA‐20 and PS4VP‐15 formed interpolymer complexes. The obtained glass‐transition temperatures (Tg's) of the PSMA‐20/PS4VP‐15 complexes were found to be higher than those calculated from the additivity rule. Although, depending on the content of 4VP, the shape of the Tg of the PPO/PS4VP blends changed from concave to S‐shaped in the case of the miscible blends, two Tg were observed with each PPO/PS4VP‐30 and PPO/PS4VP‐40 blend. The thermal stability of the PSMA‐20/PS4VP‐15 interpolymer complexes was studied by thermogravimetry. On the basis of the obtained results, the phase behavior of the ternary PPO/PSMA‐20/PS4VP‐15 blends was investigated by DSC. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
The ternary blends of poly(methyl methacrylate)/poly(vinyl pyrrolidone)/poly(ethylene oxide), PMMA/PVP/PEO, were prepared by melting process, using a Haake plastograph, and nuclear magnetic resonance spectroscopy (NMR) was used as a methodology to characterize the molecular mobility of blend components, because NMR has several techniques that allow us to evaluate polymeric materials in different time scales. The NMR results showed that the blends were miscible on a molecular level. The values of proton lattice relaxation time in the rotating frame (T1ρH) indicate that the ternary blend interaction did not reduce the intermolecular distance, because it is dipole–dipole. The molecular motion of each component, even in the miscible amorphous phase and the addition of PEO, has a definitive effect on the PMMA molecular mobility. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1492–1495, 2006  相似文献   

14.
Blends of synthetic poly(propylene carbonate) (PPC) with a natural bacterial copolymer of 3‐hydroxybutyrate with 3‐hydroxyvalerate (PHBV) containing 8 mol % 3‐hydroxyvalerate units were prepared with a simple casting procedure. PPC was thermally stabilized by end‐capping before use. The miscibility, morphology, and crystallization behavior of the blends were investigated by differential scanning calorimetry, polarized optical microscopy, wide‐angle X‐ray diffraction (WAXD), and small‐angle X‐ray scattering (SAXS). PHBV/PPC blends showed weak miscibility in the melt, but the miscibility was very low. The effect of PPC on the crystallization of PHBV was evident. The addition of PPC decreased the rate of spherulite growth of PHBV, and with increasing PPC content in the PHBV/PPC blends, the PHBV spherulites became more and more open. However, the crystalline structure of PHBV did not change with increasing PPC in the PHBV/PPC blends, as shown from WAXD analysis. The long period obtained from SAXS showed a small increase with the addition of PPC. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 4054–4060, 2003  相似文献   

15.
Dynamic viscoelastic properties of blends of poly(methyl methacrylate) (PMMA) and poly(styrene‐co‐acrylonitrile) (SAN) with various AN contents were measured to evaluate the influence of SAN composition, consequently χ parameter, upon the melt rheology. PMMA/SAN blends were miscible and exhibited a terminal flow region characterized by Newtonian flow, when the acrylonitrile (AN) content of SAN ranges from 10 to 27 wt %. Whereas, PMMA/SAN blends were immiscible and exhibited a long time relaxation, when the AN content in SAN is less than several wt % or greater than 30 wt %. Correspondingly, melt rheology of the blends was characterized by the plots of storage modulus G′ against loss modulus G″. Log G′ versus log G″ plots exhibited a straight line of slope 2 for the miscible blends, but did not show a straight line for the immiscible blends because of their long time relaxation mechanism. The plateau modulus, determined as the storage modulus G′ in the plateau zone at the frequency where tan δ is at maximum, varied linearly with the AN content of SAN irrespective of blend miscibility. This result indicates that the additivity rule holds well for the entanglement molecular weights in miscible PMMA/SAN blends. However, the entanglement molecular weights in immiscible blends should have “apparent” values, because the above method to determine the plateau modulus is not applicable for the immiscible blends. Effect of χ parameter on the plateau modulus of the miscible blends could not be found. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
The thermal behavior and properties of immiscible blends of polystyrene (PS) and poly(methyl methacrylate) (PMMA) with and without PS‐b‐PMMA diblock copolymer at different melt blending times were investigated by use of a differential scanning calorimeter. The weight fraction of PS in the blends ranged from 0.1 to 0.9. From the measured glass transition temperature (Tg) and specific heat increment (ΔCp) at the Tg, the PMMA appeared to dissolve more in the PS phase than did the PS in the PMMA phase. The addition of a PS‐b‐PMMA diblock copolymer in the PS/PMMA blends slightly promoted the solubility of the PMMA in the PS and increased the interfacial adhesion between PS and PMMA phases during processing. The thermogravimetric analysis (TGA) showed that the presence of the PS‐b‐PMMA diblock copolymer in the PS/PMMA blends afforded protection against thermal degradation and improved their thermal stability. Also, it was found that the PS was more stable against thermal degradation than that of the PMMA over the entire heating range. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 609–620, 2004  相似文献   

17.
Dual-phase continuity and phase inversion of polystyrene (PS)/poly(methyl methacrylate) (PMMA) blends processed in a twin-screw extruder was investigated using a selective extraction technique and scanning electron microscopy. Emphasis was placed on investigating the effects of viscosity ratio, blend composition, processing variables (mixing time and annealing) and diblock copolymer addition on the formation of bi-continuous phase structure (BPS) in PS/PMMA blends. The experimental results were compared with the volume fraction of phase inversion calculated with various semi-empirical models. The results showed that the formation of a BPS strongly depends on the blend composition and the viscosity ratio of the constituent components. Furthermore, BPS was found in a wide volume fraction interval. Increasing the mixing time and the addition of diblock copolymer, both led to a narrowing range of volume fraction in which BPS exists. Quiescent annealing coarsened the structure but indicated no qualitative changes. Some model predictions for phase inversion could predict qualitative aspects of the observed windows of co-continuity but none of the models could account quantitatively for the observed data.  相似文献   

18.
In this work, the compatibilization of blends of plasticized polyvinyl chloride (PVC) and polystyrene (PS) with poly(styrene‐con‐methylolacrylamide) (PSnMA) was investigated. The PSnMA was synthesized by emulsion polymerization with different amounts of n‐methylolacrylamide (nMA). Particle size and phase behavior was determined by scanning electron microscopy, and mechanical properties were determined in an Universal Testing Machine. Micrographs revealed that an appreciable size reduction of the dispersed phase was achieved when small amounts of PSnMA were added to the blend, and as the amount of nMA was increased, particle size decreased. When the (PVC/PS/PSnMA) blend was subjected to solvent extraction to remove PS and unreacted PVC, the residue showed a single Tg. Tensile modulus and the ultimate strength of the blends increased with PSnMA content. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
Specimens of poly(vinylidene fluoride) (PVDF)–poly(methyl methacrylate) (PMMA)–polystyrene (PS) polyblends with different weight percentage ratios of the three polymers were prepared with the solution cast technique. The effect of γ irradiation on the Vicker's microhardness was studied. Among the three pure polymers, PVDF, PMMA, and PS, the γ irradiation imparted crosslinking in PVDF, thereby causing radiational hardening. In the cases of PMMA and PS, the effect of irradiation exhibited a predominance of both the scissioning and crosslinking processes in different ranges of doses. Moreover, at a dose of 5 Mrad, in both PMMA and PS, maximum radiational crosslinking was observed. The effect of γ irradiation seemed to stabilize beyond 15 Mrad in PVDF and beyond 20 Mrad in PMMA and PS. Microhardness measurements on ternary blends of PVDF, PMMA, and PS revealed that the blend with low contents of PMMA, that is, up to 5 wt %, yielded softening, whereas increasing the content of PMMA beyond 5 wt % produced a hardened material because of radiational crosslinking, and a higher content of PMMA in the blend facilitated this crosslinking. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3107–3111, 2004  相似文献   

20.
The blend miscibility of poly(vinyl alcohol) and poly(methyl methacrylate) in N,N′‐dimethylformamide solution was investigated by viscosity, density, ultrasonic velocity, refractive index, and UV and fluorescence spectra studies. Differential scanning calorimetry and scanning electron microscopy were used to confirm the blend miscibility in the solid state. Blends were compatible when the concentration of poly(vinyl alcohol) was greater than 60 wt %. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2415–2421, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号