首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The huge commercial success of mobile telephony, the phenomenal growth of Internet users, the popularity of IP-based multimedia applications are the major driving forces behind third-generation (3G), ongoing Byond 3G (B3G), and forth-genertion (4G) evolution. 3G brought wired applications, both data and multimedia, into wireless environments. It operates on IP-based infrastructures to provide wider service access capability. To support and satisfy QoS (Quality of Service) of diverse IP-based multimedia applications, traffic management, such as Connection Admission Control (CAC) and resource allocation, becomes essential. CAC and resource allocation are computationally complex when combined with QoS guarantee for traffic with different characteristics. However, CAC and resource allocation are real-time traffic control procedures. Hence, processing load should be minimized to reduce delay. At the same time, network resources should be utilized efficiently to accommodate more users. However, reducing processing load and obtaining high resource utilization efficiency has been considered to be contradictory matter. In addition, CAC and resource allocation schemes which consider multiple QoS criteria – loss and delay – simultaneously have not been adequately studied. Simultaneous QoS consideration is important to satisfy stringent and diverse QoS requirements of multimedia traffic. In this paper, we propose a nobel effective bandwidth/buffer calculation method based on a virtual channel/buffer analysis scheme. We show that our method can achieve high resource utilization efficiency with reduced processing load. Moreover, we show that our scheme allows for simultaneous consideration of multiple QoS criteria, loss and delay.  相似文献   

2.
With their inherent broadcast capabilities and reliable extensive geographical coverage, the broadband satellite networks are emerging as a promising approach for the delivery of multimedia services in 3G and beyond systems. Given the limited capacity of the satellite component, to meet the diverse quality of service (QoS) demands of multimedia applications, it is highly desired that the available resources can be adaptively utilized in an optimized way. In this paper, we draw our attention on the development and evaluation of an efficient packet scheduling scheme in a representative broadband satellite system, namely satellite digital multimedia broadcasting (SDMB), which is positioned as one of the most attractive solutions in the convergence of a closer integration with the terrestrial mobile networks for a cost‐effective delivery of point‐to‐multipoint services. By taking into account essential aspects of a successful QoS provisioning while preserving the system power/resource constraints, the proposed adaptive multidimensional QoS‐based (AMQ) packet scheduling scheme in this paper aims to effectively satisfy diverse QoS requirements and adaptively optimize the resource utilization for the satellite multimedia broadcasting. The proposed scheme is formulated via an adaptive service prioritization algorithm and an adaptive resource allocation algorithm. By taking into account essential performance criteria, the former is capable of prioritizing contending flows based on the QoS preferences and performance dynamics, while the latter allocates the resources, in an adaptive manner, according to the current QoS satisfaction degree of each session. Simulation results show that the AMQ scheme achieves significantly better performance than those of existing schemes on multiple performance metrics, e.g. delay, throughput, channel utilization and fairness. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Resource reservation or the other prioritization strategies adopted by Call Admission Control (CAC) schemes in wireless networks lead to unfair resource allocation to users belonging to different service classes (SCs) due to high divergence among the respective call blocking probabilities (CBPs). In this paper, we propose dynamic optimization of probabilistic CAC (P‐CAC) schemes to assure CAC fairness among users of different SCs in wireless networks. The approach is based on users utility combined with fairness optimization, aiming at dynamically determining the probability value in the P‐CAC scheme. This optimal probability is adjusted to network ongoing traffic, CBPs of each SC, prioritization levels characterizing the SCs supported, and the users risk aversion, which reflects their behavior toward the perceived QoS. The existence and uniqueness of the optimal probability that leads to absolute fairness among the users of a wireless network are proven. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Thanks to the great possibilities of providing different types of telecommunication traffic to a large geographical area, satellite networks are expected to be an essential component of the next‐generation internet. As a result, issues concerning the designing and testing of efficient connection‐admission‐control (CAC) strategies in order to increase the quality of service (QoS) for multimedia traffic sources, are attractive and at the cutting edge of research. This paper investigates the potential strengths of a generic digital‐video‐broadcasting return‐channel‐via‐satellite (DVB‐RCS) system architecture, proposing a new CAC algorithm with the aim of efficiently managing real‐time multimedia video sources, both with constant and high variable data rate transmission; moreover, the proposed admission strategy is compared with a well‐known iterative CAC mainly designed for the managing of real‐time bursty traffic sources in order to demonstrate that the new algorithm is also well suited for those traffic sources. Performance analysis shows that, both algorithms guarantee the agreed QoS to real‐time bursty connections that are more sensitive to delay jitter; however, our proposed algorithm can also manage interactive real‐time multimedia traffic sources in high load and mixed traffic conditions.  相似文献   

5.
Satellite networks present an attractive solution in providing worldwide access to the present and future generation multimedia communication services. However, the burstiness of multimedia traffic and the long propagation delays in Geostationary (GEO) satellite systems call for an efficient Medium Access Control (MAC) protocol and an equally efficient Call Admission Control (CAC) scheme, in order to provide acceptable Quality of Service (QoS) to multimedia users. This paper proposes a fair and dynamic CAC and MAC framework, named Fair Predictive Resource Reservation Access (FPRRA), which is based on accurate videoconference traffic prediction and makes decisions after taking into account the provider revenue. The framework’s performance is evaluated in comparison to other efficient schemes from the literature.  相似文献   

6.
Resource allocation and call admission control (CAC) are key management functions in future cellular networks, in order to provide multimedia applications to mobiles users with quality of service (QoS) guarantees and efficient resource utilization. In this paper, we propose and analyze a priority based resource sharing scheme for voice/data integrated cellular networks. The unique features of the proposed scheme are that 1) the maximum resource utilization can be achieved, since all the leftover capacity after serving the high priority voice traffic can be utilized by the data traffic; 2) a Markovian model for the proposed scheme is established, which takes account of the complex interaction of voice and data traffic sharing the total resources; 3) optimal CAC parameters for both voice and data calls are determined, from the perspective of minimizing resource requirement and maximizing new call admission rate, respectively; 4) load adaption and bandwidth allocation adjustment policies are proposed for adaptive CAC to cope with traffic load variations in a wireless mobile environment. Numerical results demonstrate that the proposed CAC scheme is able to simultaneously provide satisfactory QoS to both voice and data users and maintain a relatively high resource utilization in a dynamic traffic load environment. The recent measurement-based modeling shows that the Internet data file size follows a lognormal distribution, instead of the exponential distribution used in our analysis. We use computer simulations to demonstrate that the impact of the lognormal distribution can be compensated for by conservatively applying the Markovian analysis results.  相似文献   

7.
Low Earth Orbit (LEO) satellite networks are deployed as an enhancement to terrestrial wireless networks in order to provide broadband services to users regardless of their location. In addition to global coverage, these satellite systems support communications with hand-held devices and offer low cost-per-minute access cost, making them promising platform for Personal Communication Services (PCS). LEO satellites are expected to support multimedia traffic and to provide their users with the negotiated Quality of Service (QoS). However, the limited bandwidth of the satellite channel, satellite rotation around the Earth and mobility of end-users makes QoS provisioning and mobility management a challenging task. One important mobility problem is the intra-satellite handoff management. The main contribution of this work is to propose Q-Win, a novel call admission and handoff management scheme for LEO satellite networks. A key ingredient in our scheme is a companion predictive bandwidth allocation strategy that exploits the topology of the network and contributes to maintaining high bandwidth utilization. Our bandwidth allocation scheme is specifically tailored to meet the QoS needs of multimedia connections. The performance of Q-Win is compared to that of two recent schemes proposed in the literature. Simulation results show that our scheme offers low call dropping probability, providing for reliable handoff of on-going calls, good call blocking probability for new call requests, while maintaining bandwidth utilization high.  相似文献   

8.
无线移动网中呼叫接纳控制模型分析   总被引:7,自引:1,他引:6  
张雪 《通信学报》2005,26(8):99-109
新一代无线网应该能够同时支持传统的数据业务和实时交互式多媒体业务,并能够为用户提供QoS保证。在无线网中提供QoS保证,呼叫接纳控制扮演着重要的角色。对已有的呼叫接纳控制方面的研究成果进行了归纳、总结和分析,以期得出适合于无线移动多媒体网络的呼叫接纳控制模型。为适应当前的多媒体应用,侧重于对和适应性带宽分配相结合的接纳控制模型的分析。另外,介绍了与价格机制相结合的接纳控制模型,经济学概念的引入,为我们解决问题提供了一种新的视角。  相似文献   

9.
The rapid advance of communication and satellite technology pushes broadband satellite networks to carry on multimedia traffic. However, the function of onboard routing cannot be provided in existing satellite networks with inter‐satellite links, and quality of service (QoS) of satellite networks cannot be reliably guaranteed because of great difficulties in processing of long distance‐dependent traffic. In this paper, a two‐layered low‐Earth orbit and medium‐Earth orbit satellite network (LMSN) is presented. A novel hierarchical and distributed QoS routing protocol (HDRP) is investigated, and an adaptive bandwidth‐constrained minimum‐delay path algorithm is developed to calculate routing tables efficiently using the QoS metric information composed of delays and bandwidth. The performance of LMSN and HDRP is also evaluated through simulations and theoretical analysis. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
A new scheme for the management of real-time traffic over high-latency broadband satellite networks is described. Early studies on this topic have been reported by Iera, Molinaro and Marano (see IEEE J. Select Areas Commun.,, vol.18, p.2393-2403, 2000), with reference to an integrated terrestrial-satellite platform. In this paper, further enhancement is introduced into the traffic management scheme with a view to both the reduction of intrinsic impairments caused by the adverse operational environment and the achievement of better performance levels and QoS guarantees. A real-time traffic handling strategy, including distributed connection admission control (CAC) and traffic resource management (TRM) schemes, is harmonized with an in-band signaling technique for burst-based bandwidth request and with an effective policy for the allocation of radio resources. Furthermore, the impact of traffic reshaping at the satellite terminal on the CAC-TRM technique is tested. Added features reduce the adverse effects of the long propagation delay across the satellite link and show outstanding effectiveness in improving CAC-TRM performance and network resource efficiency, while matching service quality requirements. The main reason for the improved performance of the overall management scheme is the adaptability to different traffic profiles conveyed over satellite links  相似文献   

11.
It is very important to provide a parameterized quality of service (QoS) using traffic specification (TSPEC), such as mean data rate, maximum burst size, and peak data rate, when packets from the application layer need to be transmitted with guaranteed services in a high‐rate wireless personal area network (HR‐WPAN). As medium resources are limited, the optimal medium time required for each device needs to be estimated to share the resources efficiently among devices. This paper proposes a variable‐service interval‐based resource allocation algorithm to efficiently make a reservation of medium resources based on a parameterized QoS. In other words, the proposed algorithm calculates the number of medium access slots (MASs) based on TSPEC, local resources, and local conditions and determines suitable locations for the MASs within a superframe to accommodate more devices. The simulation results show that the proposed algorithm can accommodate more devices and has greater than 10% resource allocation efficiency in an HR‐WPAN compared to existing schemes.  相似文献   

12.
A frequency division duplex (FDD) wideband code division multiple access (CDMA) medium access control (MAC) protocol is developed for wireless wide area multimedia networks. In order to reach the maximum system capacity and guarantee the heterogeneous bit error rates (BERs) of multimedia traffic, a minimum-power allocation algorithm is first derived, where both multicode (MC) and orthogonal variable spreading factor (OVSF) transmissions are assumed. Based on the minimum-power allocation algorithm, a multimedia wideband CDMA generalized processor sharing (GPS) scheduling scheme is proposed. It provides fair queueing to multimedia traffic with different QoS constraints. It also takes into account the limited number of code channels for each user and the variable system capacity due to interference experienced by users in a CDMA network. To control the admission of real-time connections, a connection admission control (CAC) scheme is proposed, in which the effective bandwidth admission region is derived based on the minimum-power allocation algorithm. With the proposed resource management algorithms, the MAC protocol significantly increases system throughput, guarantees BER, and improves QoS metrics of multimedia traffic.  相似文献   

13.
The next‐generation packet‐based wireless cellular network will provide real‐time services for delay‐sensitive applications. To make the next‐generation cellular network successful, it is critical that the network utilizes the resource efficiently while satisfying quality of service (QoS) requirements of real‐time users. In this paper, we consider the problem of power control and dynamic channel allocation for the downlink of a multi‐channel, multi‐user wireless cellular network. We assume that the transmitter (the base‐station) has the perfect knowledge of the channel gain. At each transmission slot, a scheduler allots the transmission power and channel access for all the users based on the instantaneous channel gains and QoS requirements of users. We propose three schemes for power control and dynamic channel allocation, which utilize multi‐user diversity and frequency diversity. Our results show that compared to the benchmark scheme, which does not utilize multi‐user diversity and power control, our proposed schemes substantially reduce the resource usage while explicitly guaranteeing the users' QoS requirements. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
4G/LTE‐A (Long‐Term Evolution—Advanced) is the state of the art wireless mobile broadband technology. It allows users to take advantage of high Internet speeds. It makes use of the OFDM technology to offer high speed and provides the system resources both in time and frequency domain. A scheduling algorithm running on the base station holds the allocation of these resources. In this paper, we investigate the performance of existing downlink scheduling algorithms in two ways. First, we look at the performance of the algorithms in terms of throughput and fairness metrics. Second, we suggest a new QoS‐aware fairness criterion, which accepts that the system is fair if it can provide the users with the network traffic speeds that they demand and evaluate the performance of the algorithms according to this metric. We also propose a new QoS‐aware downlink scheduling algorithm (QuAS) according to these two metrics, which increases the QoS‐fairness and overall throughput of the edge users without causing a significant degradation in overall system throughput when compared with other schedulers in the literature.  相似文献   

15.
In this paper a novel call level model based on the extension of the classical Erlang multi‐rate model for broadband integrated services networks is proposed. We use the model to study routing strategies in multi‐service networks where service classes with/without QoS guarantees coexist. Examples for such networks include ATM and IP‐based integrated networks. In ATM, the CBR and VBR service classes provide QoS guarantees, while the ABR and UBR service classes are of the best effort type. In IP, traditional TCP/IP traffic is of the best effort type, while new protocols like the RSVP or the differentiated services with central resource handling attempt to support QoS parameters. The coexistence of guaranteed and best effort traffic gives rise to new challenging problems since for a given elastic (best effort) connection the bottleneck link determines the available bandwidth and thereby puts constraints on the bandwidth at the other links along the connection's path. Since the available bandwidth fluctuates in time following the load on the links, routing and link allocation in this environment together with blocking probability calculations and fairness issues need to be studied. By means of our proposed model we are able to conduct a survey of various routing and link allocation techniques as well as to develop a modified shortest path routing algorithm which, according to the numerical examples, performs well in this environment. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
Recently, IP satellite networks have attracted considerable interest as a technology to deliver high-bandwidth IP-based multimedia services to nationwide areas. In particular, IP satellite networks seem to be one of the most promising technologies for connecting users in rural areas, where a wired high-speed network (e.g., xDSL) is not foreseen to be used. However, one of the main problems arising here is to guarantee specific quality of service constraints in order to have good performance for each traffic class. Among various QoS approaches used in the Internet, recently the DiffServ technique has become the most promising solution, mainly for its scalability with respect to the IntServ approach. Moreover, in satellite communication systems, DiffServ computational capabilities are placed at the edge points, reducing the implementation complexity of the satellite onboard equipment. This article deals with the problem of QoS provisioning for packet traffic by considering some resource allocation schemes, including bandwidth allocation techniques and priority-driven onboard switching algorithms. As to the first aim, the proposed technique takes advantage of proper statistical traffic modeling to predict future bandwidth requests. This approach takes into consideration DiffServ-based traffic management to guarantee QoS priority among different users. Moreover, the satellite onboard switching problem has been addressed by considering a suitable implementation of the DiffServ policy based on a cellular neural network.  相似文献   

17.
‘Anytime, anywhere’ communication, information access and processing are much cherished in modern societies because of their ability to bring flexibility, freedom and increased efficiency to individuals and organizations. Wireless communications, by providing ubiquitous and tetherless network connectivity to mobile users, are therefore bound to play a major role in the advancement of our society. Although initial proposals and implementations of wireless communications are generally focused on near‐term voice and electronic messaging applications, it is recognized that future wireless communications will have to evolve towards supporting a wider range of applications, including voice, video, data, images and connections to wired networks. This implies that future wireless networks must provide quality‐of‐service (QoS) guarantees to various multimedia applications in a wireless environment. Typical traffic in multimedia applications can be classified as either Constant‐Bit‐Rate (CBR) traffic or Variable‐Bit‐Rate (VBR) traffic. In particular, scheduling the transmission of VBR multimedia traffic streams in a wireless environment is very challenging and is still an open problem. In general, there are two ways to guarantee the QoS of VBR multimedia streams, either deterministically or statistically. In particular, most connection admission control (CAC) algorithms and medium access control (MAC) protocols that have been proposed for multimedia wireless networks only provide statistical, or soft, QoS guarantees. In this paper, we consider deterministic QoS guarantees in multimedia wireless networks. We propose a method for constructing a packet‐dropping mechanism that is based on a mathematical framework that determines how many packets can be dropped while the required QoS can still be preserved. This is achieved by employing: (1) An accurate traffic characterization of the VBR multimedia traffic streams; (2) A traffic regulator that can provide bounded packet loss and (3) A traffic scheduler that can provide bounded packet delay. The combination of traffic characterization, regulation and scheduling can provide bounded loss and delay deterministically. This is a distinction from traditional deterministic QoS schemes in which a 0% packet loss are always assumed with deterministically bounding the delay. We performed a set of performance evaluation experiments. The results will demonstrate that our proposed QoS guarantee schemes can significantly support more connections than a system, which does not allow any loss, at the same required QoS. Moreover, from our evaluation experiments, we found that the proposed algorithms are able to out‐perform scheduling algorithms adopted in state‐of‐the‐art wireless MAC protocols, for example Mobile Access Scheme Based on Contention and Reservation for ATM (MASCARA) when the worst‐case traffic is being considered. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
In the not so distant future, we envisage an Internet where the biggest share of capacity is used by streaming applications. To avoid congestion collapse from unresponsive flows calls for a robust and ubiquitous end‐to‐end multimedia congestion control mechanism, such as TCP‐friendly rate control (TFRC), which provides fair sharing with the other Internet traffic. This paper therefore analyses the implications of using rate‐adaptive congestion control over satellite links that utilize demand allocation multiple access (DAMA) to maximize satellite transponder utilization. The interaction between TFRC and DAMA is explored using simulations supported by fluidic flow models. The analysis shows that DAMA reduces the start‐up phase of TFRC, causing non‐negligible delays. To mitigate this problem, we propose a new cross‐layer method based on the Quick‐Start mechanism. This can accelerate the start‐up of multimedia flows by a judicious allocation of additional capacity derived from cross‐layer signalling. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
This paper studies and develops efficient traffic management techniques for downlink transmission at the base station (BS) of multi‐service IP‐based networks by combining quality‐of‐service (QoS) provision and opportunistic wireless resource allocation. A delay‐margin‐based scheduling (DMS) for downlink traffic flows based on the delays that each packet has experienced up to the BS is proposed. The instantaneous delay margin, represented by the difference between the required and instantaneous delays, quantifies how urgent the packet is, and thus it can determine the queuing priority that should be given to the packet. The proposed DMS is further integrated with the opportunistic scheduling (OPS) to develop various queueing architectures to increase the wireless channel bandwidth efficiency. Different proposed integration approaches are investigated and compared in terms of delay outage probability and wireless channel bandwidth efficiency by simulation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
We propose a joint optimization network management framework for quality‐of‐service (QoS) routing with resource allocation. Our joint optimization framework provides a convenient way of maximizing the reliability or minimizing the jitter delay of paths. Data traffic is sensitive to droppage at buffers, while it can tolerate jitter delay. On the other hand, multimedia traffic can tolerate loss but it is very sensitive to jitter delay. Depending on the type of data, our scheme provides a convenient way of selecting the parameters which result in either reliability maximization or jitter minimization. We solve the optimization problem for a GPS network and provide the optimal solutions. We find the values of control parameters which control the type of optimization performed. We use our analytical results in a multi‐objective QoS routing algorithm. Finally, we provide insights into our optimization framework using simulations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号