首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 281 毫秒
1.
以磷酸为活化剂,采用化学活化法,利用花生壳制备活性炭。考察了浸渍时间、活化剂浓度、活化剂用量、活化时间和活化温度对活性炭吸附性能的影响,确定了制备花生壳活性炭的最佳工艺条件。实验结果表明,制备花生壳活性炭的最佳工艺条件为:浸渍时间为12 h、磷酸浓度为60%、磷酸用量为1.2 mL/g、活化时间为2 h、活化温度为400℃时。制备的花生壳活性炭具有良好的吸附性能。  相似文献   

2.
用褐煤活化一步法制备活性炭的研究   总被引:1,自引:0,他引:1  
介绍了以褐煤为原料,磷酸为活化剂,硫酸为添加剂,采用炭活化一步法制备活性炭的实验,讨论了浸渍温度、炭活化温度、炭活化时间、磷酸的浓度、磷酸溶液与褐煤的液固比、硫酸的用量等主要因素对活性炭性能的影响。结果表明,适宜的工艺条件为:浸渍温度为80℃,炭活化温度为400℃,炭活化时间为60min,磷酸质量分数为40%,磷酸溶液与褐煤的液固比为5:1,硫酸的用量为褐煤质量6%。在该适宜的工艺条件下制备的活性炭,强度为88.2%,比表面积为1 158.6 m2/g,吸碘值为946.5 mg/g,吸亚甲基蓝值为203.4mg/g。  相似文献   

3.
以废旧棉纺织品为原材料,K_2CO_3为活化剂,采用化学活化法制备棉纤基活性炭。选取活化温度、浸渍比、浸渍时间和活化时间为影响因子,探讨不同因素对活性炭碘吸附值和得率的影响,通过分析在不同条件下活性炭的比表面积及孔结构,确定棉纤基活性炭的最佳制备条件。结果表明:K_2CO_3活化法制备棉纤基活性炭的最佳条件为活化温度850℃、浸渍比1∶1、浸渍时间24 h、活化时间2 h;在该条件下,活性炭样品比表面积为1 697.38 m2/g,碘吸附值为1 637.47 mg/g,得率为14.15%;样品的中孔和微孔孔容分别为0.56 cm3/g和0.61 cm3/g。废旧棉织物可以制备出性能优良的活性炭,K_2CO_3活化法在优化棉纤基活性炭的制备工艺中是可行的。  相似文献   

4.
以竹质生物质为原料、ZnCl2为活化剂,对其进行真空化学活化。探讨了浸渍比(活化剂和竹粉的质量比)、浸渍时间、活化温度、活化时间等因素对活性炭产物吸附性能的影响。结果表明,真空条件下以ZnCl2为活化剂制备的竹质活性炭碘吸附值和亚甲基蓝吸附值较大,分别为1314.04 mg/g、321.07 mg/g;最佳工艺条件为:浸渍比150%,浸渍时间24 h,活化温度为600℃,活化时间为60 min。  相似文献   

5.
《应用化工》2022,(10):2107-2110
以大型海藻铜藻为原料,采用H_3PO_4活化法制备活性炭,考察磷酸与藻粉的浸渍比、浸渍时间、活化温度、活化时间对得率、亚甲基蓝吸附值、碘吸附值的影响。H_3PO_4活化法制备活性炭最佳工艺如下:磷酸与藻粉的质量比为5∶1,浸渍时间100 min,活化温度550℃,活化时间75 min。最佳制备条件下制得的活性炭碘吸附值为528. 8 mg/g,亚甲基蓝吸附值为142. 5 mg/g,得率为43. 74%,比表面积为728. 73 m2/g。pH=2条件下,铜藻基活性炭对于Cr(Ⅵ)最大吸附量和吸附率可分别到达31. 5 mg/g和85%。  相似文献   

6.
以大型海藻铜藻为原料,采用H_3PO_4活化法制备活性炭,考察磷酸与藻粉的浸渍比、浸渍时间、活化温度、活化时间对得率、亚甲基蓝吸附值、碘吸附值的影响。H_3PO_4活化法制备活性炭最佳工艺如下:磷酸与藻粉的质量比为5∶1,浸渍时间100 min,活化温度550℃,活化时间75 min。最佳制备条件下制得的活性炭碘吸附值为528. 8 mg/g,亚甲基蓝吸附值为142. 5 mg/g,得率为43. 74%,比表面积为728. 73 m2/g。pH=2条件下,铜藻基活性炭对于Cr(Ⅵ)最大吸附量和吸附率可分别到达31. 5 mg/g和85%。  相似文献   

7.
以碘吸附值、亚甲基蓝吸附值及活性炭得率为考察指标,选取对糠醛渣活性炭性质影响较大的浸渍比、磷酸质量分数、活化温度、保温时间4个因素进行L16(45)正交试验对磷酸活化法制备糠醛渣活性炭的工艺条件进行优化。由正交试验结果得到磷酸活化的最佳工艺条件为:磷酸质量分数60%,浸渍比2.5:1,活化温度550 ℃,保温1.5 h,此条件下制得的活性炭样品的碘吸附值为839.6 mg/g,亚甲基蓝吸附值为260.3 mg/g,得率为46.8%,比表面积为830.20 m2/g,孔容积为0.502 cm3/g,孔径集中在0.8~2.5 nm,具有丰富的中孔和微孔。  相似文献   

8.
以光合竹为原料,研究了其制备活性炭的工艺条件,考察了活化剂浓度、固液比、活化时间以及活化温度等因素对活性炭碘吸附值、亚甲基蓝吸附值的影响。实验结果表明,用化学法制备光合竹活性炭的最佳工艺参数为:以Zn Cl2为活化剂,Zn Cl2浓度为5 mol/L,活化剂浸渍时间为2 h,固液比为1∶4,活化时间为60 min,活化温度为500℃。在此工艺条件下所制备活性炭得率为48.8%,亚甲基蓝吸附值为197.14 mg/g,碘吸附值为1 034.30 mg/g,样品质量指标接近净化用活性炭标准。  相似文献   

9.
以碱木质素和杉木屑为原料,磷酸为活化剂,制备碱木质素基成型活性炭,考察了碱木质素质量分数、浸渍比、活化温度、活化时间等对活性炭性能的影响。研究结果表明:碱木质素复配杉木屑(碱木质素质量分数50%)后,复配料的表面润湿性显著提高,瞬时水接触角由133.2°(碱木质素)降低至86.6°(复配料);热膨胀系数显著降低,膨胀温度区间的热膨胀系数由2 365μm/(m·℃)(碱木质素)降低至45μm/(m·℃)(复配料)。在最佳工艺条件即碱木质素质量分数50%、浸渍比1.5∶1(纯磷酸与复配料质量比)、活化温度500℃、活化时间90 min下,制备的成型活性炭得率41.76%,碘吸附值1 070 mg/g,亚甲基蓝吸附值255 mg/g,强度90%,比表面积1 646 m2/g,总孔容积为0.795 cm3/g,其中孔径小于5 nm的孔容积占总孔容积的97.2%。  相似文献   

10.
以瓜子壳为原料,磷酸为活化剂,通过微波法制备出具有高吸附效率的活性炭,与四氧化三铁结合成磁性活性炭粒子,研究活化温度、磷酸浓度、浸渍比、微波时间对活性炭吸附性能的影响,通过XRD、红外光谱对其外貌与官能团进行分析,通过吸附等温线、吸附动力学探讨了其机理。结果表明,最佳制备活性炭的工艺条件为:活化温度120℃,浸渍比4 g/15 m L,磷酸浓度20%,微波时间25 min,测得其碘吸附值为887. 349 mg/g,亚甲基蓝吸附量70 mg/g,磁性活性炭最佳碳/四氧化三铁为60%。红外谱图显示四氧化三铁与活性炭之间通过油酸相结合,有大量的羧酸基团。吸附等温线与吸附动力学表明,磁性活性炭粒子为均匀单层化学吸附。  相似文献   

11.
熊道陵  许光辉  张团结  陈金洲  陈超 《化工进展》2015,34(12):4280-4284
以油茶壳醇浸取后残渣为原料,以磷酸活化法制备活性炭,考察了浸渍比、磷酸质量分数和活化温度等对活性炭吸附性能及其得率的影响;活性炭的吸附性能由碘吸附值、亚甲基蓝吸附值表征。结果表明,在酸/炭浸渍比为3:1、磷酸质量分数70%、活化温度500℃时,活性炭的吸附性能最佳,其碘、亚甲基蓝吸附值和得率分别为1043.29mg/g、148.5mg/g和38.77%。采用物理吸附仪在77K下测定其N2吸附脱附等温线,利用BET法和BJH法计算比表面积和孔径分布,其比表面积为1626.45m2/g,平均孔径为4.7nm,总孔容为1.94cm3/g。同时采用FTIR和XRD分析了活性炭的表面官能团和微观结构。  相似文献   

12.
微波辐射龙眼壳制备活性炭的正交试验研究   总被引:2,自引:0,他引:2  
以龙眼壳为原料,氯化锌为活化剂,微波制备活性炭,采用正交试验研究了浸渍时间、微波功率、微波辐射时间、活化剂浓度等对活性炭产率和吸附性能的影响。得到了较优制备条件;浸渍时间48h,微波功率720w,辐射时间13min,氯化锌质量分数25%。活性炭的亚甲基蓝吸附值为93mL/g,碘的吸附值为1011.40mg/g,优于国家一级品指标。该方法操作方便,热效率高,大大缩短了活性炭的制备时间。  相似文献   

13.
磷酸活化法制备花生壳活性炭工艺   总被引:8,自引:1,他引:7  
采用正交试验方法探讨了以花生壳为原料,通过磷酸活化法制备的高效活性炭吸附剂。以活性炭的收率和Pb2+吸附容量为考察指标,选择了磷酸质量浓度、浸渍质量比和活化温度3个因素,3个水平的正交试验方法。结果表明,对活性炭收率影响最大的因素是活化温度,对活性炭吸附Pb2+容量影响最大的是磷酸活化剂的质量浓度。综合考察各影响因素,得出在磷酸活化剂质量浓度为1 220 kg/m3,浸渍质量比为150%和活化温度为400℃时可以在保持活性炭收率较高的情况下制备高Pb2+吸附容量的花生壳活性炭吸附剂,该活性炭的比表面为1 018.5 m2/g,总孔容积为0.754 m3/g,平均孔径为2.961 nm,对低质量浓度含铅废水中铅离子的去除率接近100%,是合适的液相吸附用活性炭材料。  相似文献   

14.
微波制备污泥质活性炭吸附剂及其再生研究   总被引:2,自引:0,他引:2  
以城市污泥为原料,磷酸和氯化锌为活化剂,微波制备活性炭吸附剂,考察了活化剂浓度、浸渍时间、微波功率和辐射时间等对活性炭产率和吸附性能的影响。结果表明,活性炭对亚甲基蓝吸附值为86.2 mL/g,碘的吸附值为806.0 mg/g。用该活性炭处理含铬废水后再生,其亚甲基蓝吸附值为89.4 mL/g,碘的吸附值为795.3 mg/g,并且再生前后活性炭对含铬废水均有较好的处理效果。该方法操作方便,缩短了活性炭的制备和再生时间,再生效果好。  相似文献   

15.
《分离科学与技术》2012,47(6):886-895
Activated carbon prepared from palm shell by phosphoric acid impregnation, at significantly favorable experimental conditions is characterized for the porous nature and adsorption of methylene blue dye molecules. The activation is carried out using a 2-stage activation process with the activation in a self-generated atmosphere. An activation temperature of 500°C, with an activation time of 75 minutes using a phosphoric acid impregnation ratio of 3 has yielded an activated carbon having unique characteristics. An activated carbon with a yield of 48%, total pore volume of 1.9 cm3/g, surface area of 1956 m2/g, an average pore diameter of 3.8 nm, with the ratio of the mesopore to the total surface area in excess of 75% has been prepared. The activated carbon exhibits a high methylene blue equilibrium adsorption capacity of 438 mg/g with the adsorption isotherm increasing with an increase in the adsorption temperature. Among the various adsorption isotherm models, the Langmuir model is able to explain the adsorption process well, evidenced by the proximity of the model with the experimental data. Among the different kinetic models tested with the experimental kinetic data, a pseudo-second-order model is found to fit the experimental data with close proximity.  相似文献   

16.
以半纤维素的主要模型物木聚糖为原料,在不添加其他粘结剂的条件下,采用磷酸活化法制备半纤维素基颗粒活性炭。讨论了浸渍比和炭活化工艺对活性炭吸附性能和孔隙结构的影响。研究结果表明:浸渍比的增加,有利于颗粒活性炭的比表面积、亚甲基蓝吸附值、强度、总孔容积和中孔容积的提高。随着炭活化温度的升高,颗粒活性炭的碘吸附值、亚甲基蓝吸附值、比表面积、总孔容积和微孔容积呈下降的趋势,强度呈上升趋势。N2吸附-脱附等温线和孔径分析表明,颗粒活性炭具有发达的微孔结构,炭活化温度的升高不利于孔隙结构的发达。  相似文献   

17.
磷酸活化微波辐照花生壳制备活性炭   总被引:3,自引:0,他引:3  
以花生壳为原料、磷酸为活化剂,微波加热制备活性炭。研究了活化剂浓度、料液比、微波功率、活化时间对活性炭吸附性能及收率的影响。采用单因素实验,以活性炭的亚甲基蓝脱色力为考察指标,确定了微波辐照花生壳制备活性炭的最佳工艺条件为:活化剂浓度为40%,料液比为1∶3,微波功率为462 W,活化时间为20 min。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号