首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Real‐life work operations of industrial robotic manipulators are performed within a constrained state space. Such operations most often require accurate planning and tracking a desired trajectory, where all the characteristics of the dynamic model are taken into consideration. This paper presents a general method and an efficient computational procedure for path planning with respect to state space constraints. Given a dynamic model of a robotic manipulator, the proposed solution takes into consideration the influence of all imprecisely measured model parameters, making use of iterative learning control (ILC). A major advantage of this solution is that it resolves the well‐known problem of interrupting the learning procedure due to a high transient tracking error or when the desired trajectory is planned closely to the state space boundaries. The numerical procedure elaborated here computes the robot arm motion to accurately track a desired trajectory in a constrained state space taking into consideration all the dynamic characteristics that influence the motion. Simulation results with a typical industrial robot arm demonstrate the robustness of the numerical procedure. In particular, the results extend the applicability of ILC in robot motion control and provide a means for improving the overall trajectory tracking performance of most robotic systems.  相似文献   

2.
机械手的模糊逆模型鲁棒控制   总被引:3,自引:0,他引:3  
提出一种基于模糊聚类和滑动模控制的模糊逆模型控制方法,并将其应用于动力学 方程未知的机械手轨迹控制.首先,采用C均值聚类算法构造两关节机械手的高木-关野 (T-S)模糊模型,并由此构造模糊系统的逆模型.然后,在提出的模糊逆模型控制结构中, 离散时间滑动模控制和时延控制(TDC)用于补偿模糊建模误差和外扰动,保证系统的全局 稳定性并改进其动态和稳态性能.系统的稳定性和轨迹误差的收敛性可以通过稳定性定理来 证明.最后,以两关节机械手的轨迹跟随控制为例,揭示了该设计方法的控制性能.  相似文献   

3.
In this article, an adaptive neural controller is developed for cooperative multiple robot manipulator system carrying and manipulating a common rigid object. In coordinated manipulation of a single object using multiple robot manipulators simultaneous control of the object motion and the internal force exerted by manipulators on the object is required. Firstly, an integrated dynamic model of the manipulators and the object is derived in terms of object position and orientation as the states of the derived model. Based on this model, a controller is proposed that achieves required trajectory tracking of the object as well as tracking of the desired internal forces arising in the system. A feedforward neural network is employed to learn the unknown dynamics of robot manipulators and the object. It is shown that the neural network can cope with the unknown nonlinearities through the adaptive learning process and requires no preliminary offline learning. The adaptive learning algorithm is derived from Lyapunov stability analysis so that both error convergence and tracking stability are guaranteed in the closed loop system. Finally, simulation studies and analysis are carried out for two three-link planar manipulators moving a circular disc on specified trajectory.  相似文献   

4.
This paper develops a kinematic path‐tracking algorithm for a nonholonomic mobile robot using an iterative learning control (ILC) technique. The proposed algorithm produces a robot velocity command, which is to be executed by the proper dynamic controller of the robot. The difference between the velocity command and the actual velocity acts as state disturbances in the kinematic model of the mobile robot. Given the kinematic model with state disturbances, we present an ILC‐based path‐tracking algorithm. An iterative learning rule with both predictive and current learning terms is used to overcome uncertainties and the disturbances in the system. It shows that the system states, outputs, and control inputs are guaranteed to converge to the desired trajectories with or without state disturbances, output disturbances, or initial state errors. Simulations and experiments using an actual mobile robot verify the feasibility and validity of the proposed learning algorithm. © 2005 Wiley Periodicals, Inc.  相似文献   

5.
A controller for solving the tracking problem of flexible robot arms is presented. In order to achieve this goal, the desired trajectory for the link (flexible) coordinates is computed from the dynamic model of the robot arm and is guaranteed to be bounded, and the desired trajectory for the joint (rigid) coordinates can be assigned arbitrarily. The case of no internal damping is also considered, and a robust control technique is used to enhance the damping of the system  相似文献   

6.
This paper deals with the synthesis of fuzzy controller applied to the induction motor with a guaranteed model reference tracking performance. First, the Takagi-Sugeno (T-S) fuzzy model is used to approximate the nonlinear system in the synchronous d-q frame rotating with field-oriented control strategy. Then, a fuzzy state feedback controller is designed to reduce the tracking error by minimizing the disturbance level. The proposed controller is based on a T-S reference model in which the desired trajectory has been specified. The inaccessible rotor flux is estimated by a T-S fuzzy observer. The developed approach for the controller design is based on the synthesis of an augmented fuzzy model which regroups the model of induction machine, fuzzy observer, and reference model. The gains of the observer and controller are obtained by solving a set of linear matrix inequalities (LMIs). Finally, simulation and experimental results are given to show the performance of the observer-based tracking controller.  相似文献   

7.
马乐乐  刘向杰 《自动化学报》2019,45(10):1933-1945
迭代学习模型预测控制是针对间歇过程的先进控制方法.它能通过迭代高精度跟踪给定参考轨迹,并保证时域上的闭环稳定性.然而,现有的迭代学习模型预测控制算法大多基于线性/线性化系统,且没有考虑参考轨迹变化的情况.本文基于线性参变系统提出一种能有效跟踪变参考轨迹的鲁棒迭代学习模型预测控制算法.首先,采用线性参变模型准确涵盖原始非线性系统的动态特性.然后,将鲁棒H控制与传统迭代学习模型预测控制相结合,抑制变参考轨迹带来的跟踪误差波动,通过优化线性矩阵不等式约束下的目标函数求得控制输入.深入分析了鲁棒迭代学习模型预测控制的鲁棒稳定性和迭代收敛性.最后,通过对数值例子和连续搅拌反应釜系统的仿真验证了所提出算法的有效性.  相似文献   

8.
In this paper, the trajectory tracking and (dynamic) obstacle avoidance of a car-like mobile robot (CLMR) within distributed sensor-network spaces via fuzzy decentralized sliding-mode control (FDSMC) is developed. To implement trajectory tracking and (dynamic) obstacle avoidance, two distributed charge-coupled device (CCD) cameras are set up to realize the dynamic position of the CLMR and the obstacle. Based on the control authority of these two CCD cameras, a suitable reference trajectory including desired steering angle and forward-backward velocity for the proposed controller of the CLMR is planned. It is also transmitted to the CLMR by a wireless module. The proposed FDSMC can track a reference trajectory without the requirement of a mathematical model. Only the input-output data pairs of the CLMR and the upper bound of its dynamics are required for the selection of suitable scaling factors. The proposed control system includes two processors with multiple sampling rates. One is a personal computer employed to obtain the image of the CLMR and the obstacle, to plan a reference trajectory for the CLMR, and then to transmit the planned reference trajectory to the CLMR. The other is a digital signal processor (DSP) implementing in the CLMR to control two dc motors. Finally, a sequence of experiments is carried out to confirm the performance of the proposed control system.  相似文献   

9.
This paper presents a robust adaptive control strategy for robot manipulators, based on the coupling of the fuzzy logic control with the so‐called sliding mode control (SMC) approach. The motivation for using SMC in robotics mainly relies on its appreciable features. However, the drawbacks of the conventional SMC, such as chattering effect and required a priori knowledge of the bounds of uncertainties can be destructive. In this paper, these problems are suitably circumvented by adopting a reduced rule base single input fuzzy self tuning decoupled fuzzy proportional integral sliding mode control approach. In this new approach a decoupled fuzzy proportional integral control is used and a reduced rule base single input fuzzy self‐tuning controller as a supervisory fuzzy system is added to adaptively tune the output control gain of the decoupled fuzzy proportional integral control. Moreover, it is proved that the fuzzy control surface of the single‐input fuzzy rule base is very close to the input/output relation of a straight line. Therefore, a varying output gain decoupled fuzzy proportional integral sliding mode control approach using an approximate line equation is then proposed. The stability of the system is guaranteed in the sense of the Lyapunov theorem. Simulations using the dynamic model of a 3DOF planar manipulator with uncertainties show the effectiveness of the approach in high speed trajectory tracking problems. The simulation results that are compared with the results of conventional SMC indicate that the control performance of the robot system is satisfactory and the proposed approach can achieve favorable tracking performance, and it is robust with regard to uncertainties and disturbances. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Two important properties of industrial tasks performed by robot manipulators, namely, periodicity (i.e., repetitive nature) of the task and the need for the task to be performed by the end‐effector, motivated this work. Not being able to utilize the robot manipulator dynamics due to uncertainties complicated the control design. In a seemingly novel departure from the existing works in the literature, the tracking problem is formulated in the task space and the control input torque is aimed to decrease the task space tracking error directly without making use of inverse kinematics at the position level. A repetitive learning controller is designed which “learns” the overall uncertainties in the robot manipulator dynamics. The stability of the closed‐loop system and asymptotic end‐effector tracking of a periodic desired trajectory are guaranteed via Lyapunov based analysis methods. Experiments performed on an in‐house developed robot manipulator are presented to illustrate the performance and viability of the proposed controller.  相似文献   

11.
This paper is concerned with the design of a neuro-adaptive trajectory tracking controller. The paper presents a new control scheme based on inversion of a feedforward neural model of a robot arm. The proposed control scheme requires two modules. The first module consists of an appropriate feedforward neural model of forward dynamics of the robot arm that continuously accounts for the changes in the robot dynamics. The second module implements an efficient network inversion algorithm that computes the control action by inverting the neural model. In this paper, a new extended Kalman filter (EKF) based network inversion scheme is proposed. The scheme is evaluated through comparison with two other schemes of network inversion: gradient search in input space and Lyapunov function approach. Using these three inversion schemes the proposed controller was implemented for trajectory tracking control of a two-link manipulator. Simulation results in all cases confirm the efficacy of control input prediction using network inversion. Comparison of the inversion algorithms in terms of tracking accuracy showed the superior performance of the EKF based inversion scheme over others.  相似文献   

12.
Abstract

This work investigates the leader–follower formation control of multiple nonholonomic mobile robots. First, the formation control problem is converted into a trajectory tracking problem and a tracking controller based on the dynamic feedback linearization technique drives each follower robot toward its corresponding reference trajectory in order to achieve the formation. The desired orientation for each follower is selected such that the nonholonomic constraint of the robot is respected, and thus the tracking of the reference trajectory for each follower is feasible. An adaptive dynamic controller that considers the actuators dynamics in the design procedure is proposed. The dynamic model of the robots includes the actuators dynamics in order to obtain the velocities as control inputs instead of torques or voltages. Using Lyapunov control theory, the tracking errors are proven to be asymptotically stable and the formation is achieved despite the uncertainty of the dynamic model parameters. In order to assess the proposed control laws, a ROS-framework is developed to conduct real experiments using four ROS-enabled mobile robots TURTLEBOTs. Moreover, the leader fault problem, which is considered as the main drawback of the leader–follower approach, is solved under ROS. An experiment is conducted where in order to overcome this problem, the desired formation and the leader role are modified dynamically during the experiment.  相似文献   

13.
This paper presents an adaptive nonsingular terminal sliding mode (NTSM) tracking control design for robotic systems using fuzzy wavelet networks. Compared with linear hyperplane-based sliding control, terminal sliding mode controller can provide faster convergence and higher precision control. Therefore, a terminal sliding controller combined with the fuzzy wavelet network, which can accurately approximate unknown dynamics of robotic systems by using an adaptive learning algorithm, is an attractive control approach for robots. In addition, the proposed learning algorithm can on-line tune parameters of dilation and translation of fuzzy wavelet basis functions and hidden-to-output weights. Therefore, a robust control law is used to eliminate uncertainties including the inevitable approximation errors resulted from the finite number of fuzzy wavelet basis functions. The proposed controller requires no prior knowledge about the dynamics of the robot and no off-line learning phase. Moreover, both tracking performance and stability of the closed-loop robotic system can be guaranteed by Lyapunov theory. Finally, the effectiveness of the fuzzy wavelet network-based control approach is illustrated through comparative simulations on a six-link robot manipulator  相似文献   

14.
In recent years, more research in the control field has been in the area of self‐learning and adaptable systems, such as a robot that can teach itself to improve its performance. One of the more promising algorithms for self‐learning control systems is Iterative Learning Control (ILC), which is an algorithm capable of tracking a desired trajectory within a specified error limit. Conventional ILC algorithms have the problem of relatively slow convergence rate and adaptability. This paper suggests a novel approach by combining system identification techniques with the proposed ILC approach to overcome the aforementioned problems. The ensuing design procedure is explained and results are accrued from a number of simulation examples. A key point in the proposed scheme is the computation of gain matrices using the steepest descent approach. It has been found that the learning rule can be guaranteed to converge if certain conditions are satisfied. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

15.
机器人轨迹节点跟踪比较难,导致机器人实际轨迹偏离期望轨迹,所以设计基于视觉图像的全向移动机器人轨迹跟踪控制方法;构建全向移动机器人的运动学数学模型,以此确定机器人移动轨迹数学模型;以移动轨迹数学模型为基础,按照视觉图像划分标准对全向移动机器人运动图像的分割,通过分离目标节点的方式提取运动学特征参量,完成机器人轨迹节点跟踪处理;结合节点跟踪处理结果,将运动学不等式与误差向量作为机器人轨迹跟踪控制的约束条件,利用滑模变结构搭建轨迹跟踪控制模型,实现全向移动机器人轨迹跟踪控制;对比实验结果表明,所设计的方法应用后,全向移动机器人角速度曲线、线速度曲线与期望运动轨迹曲线之间的贴合程度均超过90%,满足全向移动机器人轨迹跟踪控制要求。  相似文献   

16.
Conventional robot control schemes are basically model-based methods. However, exact modeling of robot dynamics poses considerable problems and faces various uncertainties in task execution. This paper proposes a reinforcement learning control approach for overcoming such drawbacks. An artificial neural network (ANN) serves as the learning structure, and an applied stochastic real-valued (SRV) unit as the learning method. Initially, force tracking control of a two-link robot arm is simulated to verify the control design. The simulation results confirm that even without information related to the robot dynamic model and environment states, operation rules for simultaneous controlling force and velocity are achievable by repetitive exploration. Hitherto, however, an acceptable performance has demanded many learning iterations and the learning speed proved too slow for practical applications. The approach herein, therefore, improves the tracking performance by combining a conventional controller with a reinforcement learning strategy. Experimental results demonstrate improved trajectory tracking performance of a two-link direct-drive robot manipulator using the proposed method.  相似文献   

17.
A neuro fuzzy system which is embedded in the conventional control theory is proposed to tackle physical learning control problems. The control scheme is composed of two elements. The first element, the fuzzy sliding mode controller (FSMC), is used to drive the state variables to a specific switching hyperplane or a desired trajectory. The second one is developed based on the concept of the self organizing fuzzy cerebellar model articulation controller (FCMAC) and adaptive heuristic critic (AHC). Both compose a forward compensator to reduce the chattering effect or cancel the influence of system uncertainties. A geometrical explanation on how the FCMAC algorithm works is provided and some refined procedures of the AHC are presented as well. Simulations on smooth motion of a three-link robot is given to illustrate the performance and applicability of the proposed control scheme.  相似文献   

18.
This article proposes an adaptive fuzzy control scheme for explicit force control of a robot manipulator in contact with an environment whose parameters are unknown and vary considerably. The scheme consists of three main components: a reference force model describing the desired behavior of the force control system, a fuzzy force controller that determines the adjustment to the position control loop, and a fuzzy learning and adaptation mechanism that modifies the fuzzy force controller according to the difference between the actual and desired force responses. The modification is performed by shifting and contracting/expanding the membership functions of the fuzzy sets associated with the consequent rules of the fuzzy force controller. It is demonstrated, through simulations of a two-link manipulator and a 6-DOF industrial robot, that the scheme is capable force tracking despite wide parameter variations, such as when the environment stiffness changes by several orders of magnitude. © 1997 John Wiley & Sons, Inc.  相似文献   

19.
庞爽  刘作军  蒲陈阳  张燕 《计算机仿真》2020,37(3):314-318,348
针对一类具有对称期望轨迹跟踪的工业机器人系统,提出一种新的迭代学习控制方法,即反向型迭代学习控制方法。通过利用这类轨迹固有的特征,将其以中心点为界分解为前后两个独立的轨迹,利用两段轨迹的镜像对称特征,不断交替优化调整下次迭代周期的控制量,使得跟踪当前轨迹的工业机器人系统每次迭代时不必再从轨迹的初始点学习,从而有效加快了系统的学习速度。对具有镜像对称特征的期望轨迹进行交替利用控制信息,实现了工业机器人对期望轨迹的快速跟踪、减小系统的跟踪误差,从而达到了机器人跟踪效率的较大提升。收敛性分析和机器人的仿真实例验证了所提控制方法的有效性。  相似文献   

20.
This paper investigates the problem of finite‐time optimal tracking control for dynamic systems on Lie groups for the situation when the tracking time and/or the cost functions need to be considered. The specific results are illustrated on SE(3) (the specific Euclidean groups of rigid body motions). The tracking time is given according to task requirements in advance. By using Pontryagin's maximum principle (PMP) on Lie groups and the backstepping method, a finite‐time optimal tracking control law is designed to track a desired reference trajectory at the given time. Simultaneously, the corresponding cost functions are guaranteed to be optimal. Compared with existing results of optimal control on Lie groups, it is noteworthy that we consider the finite‐time tracking control for dynamic systems rather than kinematic systems. Furthermore, the obtained optimal control law is described by explicit formulations, which is significant for practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号