首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Wrought magnesium alloys are interesting materials for automotive and aeronautical industries due to their low density in comparison to steel and aluminium alloys, making them ideal candidates when designing a lower weight vehicle. However, due to their hexagonal close‐packed (hcp) crystal structure, magnesium alloys exhibit low formability at room temperature. For that reason, in this study a high velocity forming process, electromagnetic forming (EMF), was used to study the formability of AZ31B magnesium alloy sheet at high strain rates. In the first stage of this work, specimens of AZ31B magnesium alloy sheet have been characterised by uniaxial tensile tests at quasi‐static and dynamic strain rates at room temperature. The influence of the strain rate is outlined and the parameters of Johnson‐Cook constitutive material model were fit to experimental results. In the second stage, sheets of AZ31B magnesium alloy have been biaxially deformed by electromagnetic forming process using different coil and die configurations. Deformation values measured from electromagnetically formed parts are compared to the ones achieved by conventional forming technologies. Finally, numerical study using an alternative method for computing the electromagnetic fields in the EMF process simulation, a combination of Finite Element Method (FEM) for conductor parts and Boundary Element Method (BEM) for insulators, is shown.  相似文献   

2.
To further significantly reduce the car weight, new and innovative production technologies are necessary which allow to join aluminium and – in the future – magnesium profiles. Then it will be possible to connect components made of aluminium or magnesium base alloy with steel parts to one group. Such a new technology is pulsed‐magnetic joining. In order to lower the process forces necessary for pulsed‐magnetic joining of high strength aluminium alloys and in order to establish a technologically useful forming of magnesium alloys, joining at increased temperatures appears to be a viable solution. As part of the research a tool for pulsed‐magnetic hot joining has been developed that combines the processes of heating by induction and pulsed‐magnetic joining. The applicability and the potentials of the tool have been demonstrated with hot joining of aluminium and magnesium profiles. The combination of the techniques allows for the first time to join magnesium profiles with forming by using pulsed‐magnetic forming at high temperatures. Regarding aluminium the combination of the techniques allows a significant reduction of the magnetic pressure that is necessary for the forming process; it thereby increases the operating life of the tools.  相似文献   

3.
As a lightweight material, magnesium is being increasingly used for automotive parts. However, due to a hexagonal-closed-packed (hcp) crystal structure, in which only the basal plane can move, magnesium alloy sheets exhibit a low ductility and formability at room temperature. Press forming of magnesium alloy sheets is conventionally performed at elevated temperatures of 200 °C to 250 °C and thus is known as energy consumed forming. Therefore, in view of an energy saving forming technology, we study magnesium alloy sheet forming by a rotational incremental sheet forming (RISF) at room temperature, where the rotational tool generates local heat of specimen enough to accelerate plastic deformation. The flow curves of the magnesium alloy sheet are obtained and calculated at elevated temperatures, while the yield loci of the magnesium alloy sheet are measured at room temperature. Using RISF, a square cup of 80-mm width, 80-mm length, and 25-mm height is then formed from a magnesium alloy sheet at room temperature. In addition, the strain distribution is obtained and compared with the forming limit curve (FLC) by considering the effect of the tool radius and is found to effectively predict the forming limit of a magnesium alloy sheet in RISF.  相似文献   

4.
Magnesium alloys are generating interest in the automotive and aeronautic industries due to their low density and potential to reduce gross vehicular weight. However, the formability of these alloys is poor and they are very difficult to be formed at room temperature due to their strong basal texture in rolled form. In this paper, the potential of magnesium alloy sheets to be processed at warm conditions is studied for four different forming technologies: incremental forming (IF), deep drawing (DD), hydroforming (HF), and electromagnetic forming (EMF). Forming mechanisms and process window are experimentally characterized by monitoring different process parameters. Special focus is made on the influence of the forming temperature and the strain rate. Thus, experiments at temperatures from room to 523 K (250 °C) and a wide range of strain rates, between 10?3 up to 10s?1 according to each process nature and scope, are conducted. It is observed that, even the inherent forming rate range of each process vary considerably, increasing forming temperature increases formability for all of these forming processes. In the other hand, an opposing effect of the strain rate is observed between the quasi-static processes (IF, DD, and HF) and the high speed process (EMF). Thus, a detrimental effect on formability is observed when increasing strain rate for quasi-static processes, while a mild increase is observed for EMF.  相似文献   

5.

Warm forming has previously proven to be a promising manufacturing route to improve formability of Al brazing sheets used in automotive heat exchanger production; however, the impact of warm forming on subsequent brazing has not previously been studied. In particular, the interaction between liquid clad and solid core alloys during brazing through the process of liquid film migration (LFM) requires further understanding. Al brazing sheet comprised of an AA3003 core and AA4045 clad alloy, supplied in O and H24 tempers, was stretched between 0 and 12 pct strain, at room temperature and 523K (250 °C), to simulate warm forming. Brazeability was predicted through thermal and microstructure analysis. The rate of solid–liquid interactions was quantified using thermal analysis, while microstructure analysis was used to investigate the opposing processes of LFM and core alloy recrystallization during brazing. In general, liquid clad was consumed relatively rapidly and LFM occurred in forming conditions where the core alloy did not recrystallize during brazing. The results showed that warm forming could potentially impair brazeability of O temper sheet by extending the regime over which LFM occurs during brazing. No change in microstructure or thermal data was found for H24 sheet when the forming temperature was increased, and thus warm forming was not predicted to adversely affect the brazing performance of H24 sheet.

  相似文献   

6.
Single‐phase and two‐phase ternary Fe‐Al‐Mo alloys with Al contents of usually 10 ‐16 at.% and Mo contents up to 42 at.% have been studied with respect to hardness at room temperature, yield stress and fracture strain at room temperature and higher temperatures up to 1000 °C and oxidation at temperatures of 400 ‐ 1000 °C. Thse alloys are strengthened by precipitation of the metastable R phase and/or the stable m phase depending on composition and heat treatment; both are hard and brittle intermetallic phases. The yield stress as well as the brittle‐to‐ductile transition temperature increases with increasing Mo content to reach yield stresses above 1400 MPa with, however, fracture strains below 1 % at temperatures below 800 °C. The observed short‐term oxidation is similar to that of other Fe‐Al alloys.  相似文献   

7.
The forming behaviour at high temperature of a modified 9%Cr‐1%Mo (P91) ferritic steel containing B and Ti for elevated temperature service was investigated. The microstructure of the as‐received material is mainly martensite at room temperature, but special etching revealed prior austenite grains of about 25 μm in size. Torsion tests were conducted at temperatures in the range 850 to 1250 °C to simulate the hot rolling process under comparable conditions of temperature, strain rate and strain. The deformation data obtained from these tests were correlated with the Garofalo equation with a stress exponent of 4.6 and an activation energy of 315 kJ/mol. This equation was used to predict the formability behaviour for the rolling process and also to determine the maximum forming efficiency and stability of the steel. A temperature of 1200 °C is recommended to conduct the forming process.  相似文献   

8.
The motivation of the presented research work was to provide an approach to reduce the high fluid pressures and clamping forces needed in hydroforming presses to cup small form elements. Using local heating, small form elements like domes and creases can be formed at very low pressures of 2‐3 MPa, whereas cold forming requires pressures which are 20‐50 times higher. Apart from the proportion of forming temperature and work pressure, temperature distribution is very important, and can be adjusted by a special laser beam shaping optic or scanning processing head. The second method is more flexible in regard to element sizes and outlines, but has a lower thermal efficiency. Line network analyses were carried out showing great improvements in the resulting strain distribution. In order to characterise the general improvement of the material's formability, forming limit curves (FLC) were generated, using the bulge‐test. The results prove the extended forming limit of the laser‐assisted warm cupping process. For the investigations different materials were used: the deep drawing steel DC05, the aluminium alloy 5182 and the magnesium alloy AZ31.  相似文献   

9.
In order to make an automobile body structure, incremental sheet metal forming is introduced as a rapid prototyping process. Numerical modeling of the process is initially used to predict the deformation of the sheet metal to avoid failure during the incremental forming process using ABAQUS/Explicit finite element code and OYANE's ductile fracture criterion via a VUMAT user material. An automobile CAD model is then designed, and segmented into several parts in order to accommodate the working space of the CNC machine and formability of sheet metal. After that, CAM software is used to generate a tool‐path for making wooden‐dies and all small parts. Finally, a welding process is applied to join all parts which were cut by laser cutting after incremental sheet forming process.  相似文献   

10.
In an effort to investigate thixo‐joining of aluminium alloy AISi7Mg with bolts of different metals, a series of experiments was carried out. An aluminium master part of high geometric complexity was thixo‐forged. Then thixo‐joining experiments were conducted. While the thixo‐forging of the aluminium master part being completed, bolts of brass, copper, plain carbon steel and stainless steel were integrated into the thixo‐forged part in one step. Evaluations of the produced parts were performed with X‐ray inspection, microstructure and segregation analyses. The experimental results confirm that the aluminium alloy A356 has good formability in semi‐solid state and that the thixo‐joining of the metal bolts with the aluminium part in one step is feasible.  相似文献   

11.
Temperature controlled sheet hydroforming is known as the innovative processing of warm/hot sheet hydroforming. Cylindrical cup hydromechanical deep drawing (HMD) at elevated temperature is the typical process for basic research. Warm HMD process was carried out on a warm sheet hydroforming experiment platform to investigate the influences of key processing parameters on formability. The process window of successful forming versus liquid pressure was obtained, which was manifested as a shape of pyramid. The region of successful forming in warm/hot sheet hydroming is a father set of that in cold sheet hydroforming. The microstructure evolution of cups formed by using warm HMD under the effect of temperature was investigated. The grain growth was observed compared with cold HMD. The hardness of hydroformed cup was tested and no apparent reduction of hardness was detected.  相似文献   

12.
Two‐phase ternary Fe‐Ti‐Si alloys with Si contents from 2 to 16 at.% and Ti contents from 2 to 28 at.% were studied with respect to room temperature hardness, fracture strain and yield stress at room and higher temperatures up to 1150 °C. In addition oxidation was checked at temperatures between 400 and 1150 °C. The alloys are strengthened by precipitation of the stable Laves phase (Fe,Si)2Ti which is a hard and brittle intermetallic phase. The yield stress as well as the brittle‐to‐ductile transition temperature (BDTT) increase with increasing Ti content. Yield stresses up to about 1400 MPa and BDTT between 100 °C and 600 °C with fracture strains of the order of 1 % below BDTT were achieved. The observed short‐term oxidation performance at temperatures up to 1150 °C compares favourably with that of Fe‐AI alloys with high Al contents.  相似文献   

13.
14.
A further development of dual‐phase‐steels are represented by TRIP (transformation induced plasticity) ‐steels. TRIP‐steels contain austenite, which is metastable at room temperature. It transforms to martensite during straining (TRIP effect). This process improves the strength‐ductility balance of these steels. Two types of TRIP‐steels, low alloyed (L‐TRIP) and high alloyed (H‐TRIP), can be applied in sheet forming processes and exhibit different forming characteristics. Basing on results of uniaxial tensile tests and the evaluation of Young's modulus the forming limits in deep drawing processes and the component properties of deep drawn parts are discussed. The Young's modulus decreases significantly with increasing pre‐strain, especially demonstrated for the L‐TRIP material TRIP700. Forming limit curves determined at different forming temperatures indicate its influence on the forming limits. Martensite transformation is suppressed at a temperature of approximately T = 200 °C and therefore the major strain ?1 decreases significantly. For the investigated stainless steel AISI304 (H‐TRIP) different lubricant types in comparison to chlorinated paraffins have been tested. Lubricants consisting of sulphur additives led to good forming conditions in forming processes, even better than lubricants based on chlorinated paraffins. The evaluation of component properties, compared between L‐TRIP and H‐TRIP, was done based on the analysis of springback and dent resistance. The L‐TRIP material TRIP700 shows higher springback angles than AISI304 resulting from higher yield strength and decreased Young's modulus, resulting from the forming process. The dent resistance of TRIP‐steel was exemplarily demonstrated for AISI304. Uniaxial pre‐strained sheet specimen were analysed to show the dent resistance depending on dent depth. During elastic denting pre‐strain has no influence on dent resistance. Further increasing dent depth lead to increased dent forces for pre‐strained specimens.  相似文献   

15.
ABSTRACT

This paper presents an experimental study on the mechanical properties of ultra-high-strength steels at elevated temperatures. Tensile tests were carried out at 300–600°C on Docol 1200M and Docol 1400M steel samples. The results indicate that as the temperature increases Young’s Modulus, yield strength (YS) and ultimate tensile strength (UTS) display a decrease. YS/UTS ratios at 300°C are lower than those at room temperature, they make peaks at 400 and 500°C for Docol 1400M and Docol 1200M, respectively, and then decrease again beyond those temperatures. While total elongation continuously increases, uniform elongation slightly decreases with increasing temperature. Present carbides in tempered matrix continue to grow and new carbides are observed at the grain boundaries. Considering all roll forming parameters, 300°C seems the most convenient temperature for warm forming. In this sense, the warm roll forming has a potential for forming complex-shaped parts by reconciling strength with formability.  相似文献   

16.
Magnesium sheets offer high specific properties which make them very attractive in modern light weight constructions. The main obstacles for a wider usage are their high production costs, the poor corrosion properties and the limited ductility. Until today, forming processes have to be conducted at temperatures well above T = 220 °C. In the first place, this is a cost factor. Moreover, technical aspects, such as grain growth or the limited use of lubrication speak against high temperatures. The first aim of the presented research work is to increase the ductility at lower temperatures by alloy modification and by an adapted rolling technology. The key factor to reach isotropic mechanical properties and increased limit drawing ratios in deep drawing tools, is to achieve fine, homogeneous microstructures. This can be done by cross rolling at moderate temperatures. The heat treatment has to be adapted accordingly. In a second stage, hydro‐mechanical deep drawing experiments were carried out at elevated temperature. The results show that the forming behaviour of the tested Mg‐alloys is considerably improved compared to conventional deep drawing.  相似文献   

17.
Semi‐solid metal casting is an innovative technology for the production of near‐net‐shape parts with demanding mechanical properties. The paper describes different processing routes and materials for semi‐solid‐metal casting (SSM), which have been investigated and also partially developed at the Foundry‐Institute of Aachen University. The standard thixocasting process for aluminium, highly reactive magnesium alloys and steel alloys with high melting points was investigated under variation of a wide range of process parameters. Specially adapted pre‐material production and reheating methods were developed for different materials and their application and future potential is pointed out. The thixocasting experiments were executed on a modified high pressure die‐casting machine with a specially designed “step‐die” providing wall thicknesses from 0.5 to 25 mm. The mechanical properties were tested in dependence of the wall thickness and the metal velocity. The results of these examination show high tensile strength values in combination with very good elongations. The rheocasting process is a new SSM‐forming method with liquid melt as feed‐stock and a high recycling potential. The research results of RCP‐technology (Rheo‐Container‐Process) invented at the Foundry‐Institute and of the Cooling‐Channel‐Process for aluminium and magnesium alloys are promising and are presented in this paper. Studies on semi‐solid processing of magnesium alloys and mixtures of them were conducted by ThixomoldingTM. To establish the most adequate process parameters, the temperature and the mixture relations were varied. Using a mould for tensile test specimens, the mechanical properties and the microstructure evolution could be evaluated. The chemical composition of the different phases was determined using SEM and EDX technologies. Evaluations of the flowing properties were conducted using a spiral mould with a total length of 2m and a cross section of 20mm x 1.5mm.  相似文献   

18.
Two extruded AlZnMg alloys have been investigated in uniaxial tension, emphasizing the mechanical anisotropy and strain-rate effects. A strong mechanical anisotropy was found in the extruded profiles which had recrystallized and nonrecrystallized microstructures. The recrystallized alloy had a lower strength level and less variation in ductility and formability parameters than the nonrecrystallized alloy. Mg in solid solution causes dynamic strain aging (DSA) in both alloys. With increasing strain rate, the DSA became less effective and the strain localization caused by DSA vanished. Thus, the room-temperature formability, in the solution heat-treated and quenched condition, may be improved significantly by a sufficient increase of the strain rate. Additional tests on an as-cast sheet-ingot AlMg alloy were performed to isolate the effect of Mg from Zn in solid solution. These tests confirmed the effect of strain rate on the tensile behavior.  相似文献   

19.
A new approach towards functional gradation of structural parts is presented. This approach is based on the utilization of locally varying thermo‐mechanically coupled effects applied to different initial workpiece geometries. The possible degree of freedom for the gradation of material properties and geometrical shape for sheet metal forming applications as well as for parts produced by bulk metal forming is characterized by the results of metallographic investigations, by mechanical testing and by an indication of the remaining residual stress state. On the basis of experimental results and process simulations, it could be revealed that the ability to exactly control the dynamic microstructural evolution by thermal and mechanical process parameters combined with predefined material design parameters constitutes a key towards the adjustment of flexible material property profiles even for parts with complex three‐dimensional geometry. Beyond that, the integrative aspect of thermal and mechanical treatment already implies the high level of obtainable efficiency resulting from shortening of process chains. However, it is not only the ability to integrate shape generation and property gradation, but also the automatically included positive effect of tailoring process behaviour by a gradation of formability finally allowing to improve process efficiency e.g. by a reduction of forming steps or reduction of (local) tool load.  相似文献   

20.
This study was carried out to evaluate a new roll forming process involving pre-heating using a gas torch. The temperature distribution for the formed sheet was observed using a 3D-IR graph generated from a thermal imaging camera. The appropriate distance between the formed sheet and the butane gas torch was also determined based on the results of the flame characteristics. The thermal effects of the formed sheet were confirmed by the temperature distribution. Spring-back analysis was applied to the Nominal the Best characteristic of Taguchi’s experimental method. In spring-back analysis, the forming speed is an influential variable. Bow analysis was applied to the Smaller the best characteristic of Taguchi’s experimental method. Lastly, at room temperature, the roll forming process was performed with pre-heating and formability was analyzed with respect to spring-back, bow and variance of bending angle (buckling). Spring-back, bow and buckling with the roll forming process involving pre-heating got improved by 0.97°, 0.17 mm and 0.20, respectively, compared to the same processes at room temperature. Forming speed appeared to have the most influence on the formability and pre-heating was found to improve the formability in the roll forming process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号