首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we present a general linear matrix inequality‐based analysis method to determine the performance of a SISO reset control system in both the ??2 gain and ??2 sense. In particular, we derive convex optimization problems in terms of LMIs to compute an upperbound on the ??2 gain performance and the ??2 norm, using dissipativity theory with piecewise quadratic Lyapunov functions. The results are applicable to for all LTI plants and linear‐based reset controllers, thereby generalizing the available results in the literature. Furthermore, we provide simple though convincing examples to illustrate the accuracy of our proposed ??2 gain and ??2 norm calculations and show that, for an input constrained ??2 problem, reset control can outperform a linear controller designed by a common nonlinear optimization method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Linear programming and model predictive control   总被引:1,自引:0,他引:1  
The practicality of model predictive control (MPC) is partially limited by the ability to solve optimization problems in real time. This requirement limits the viability of MPC as a control strategy for large scale processes. One strategy for improving the computational performance is to formulate MPC using a linear program. While the linear programming formulation seems appealing from a numerical standpoint, the controller does not necessarily yield good closed-loop performance. In this work, we explore MPC with an l1 performance criterion. We demonstrate how the non-smoothness of the objective function may yield either dead-beat or idle control performance.  相似文献   

3.
4.
This paper presents synthesis conditions for the design of gain‐scheduled dynamic output feedback controllers for discrete‐time linear parameter‐varying systems. The state‐space matrix representation of the plant and of the controller can have a homogeneous polynomial dependency of arbitrary degree on the scheduling parameter. As an immediate extension, conditions for the synthesis of a multiobjective ?? and ??2 gain‐scheduled dynamic feedback controller are also provided. The scheduling parameters vary inside a polytope and are assumed to be a priori unknown, but measured in real‐time. If bounds on the rate of parameter variation are known, they can be taken into account, providing less conservative results. The geometric properties of the uncertainty domain are exploited to derive finite sets of linear matrix inequalities based on the existence of a homogeneous polynomially parameter‐dependent Lyapunov function. An application of the control design to a realistic engineering problem illustrates the benefits of the proposed approach. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
This paper studies the design problem of robust delay‐dependent ?? controller for a class of time‐delay control systems with time‐varying state and input delays, which are assumed to be noncoincident. The system is subject to norm‐bounded uncertainties and ??2 disturbances. Based on the selection of an augmented form of Lyapunov–Krasovskii (L‐K) functional, first a Bounded Real Lemma (BRL) is obtained in terms of linear matrix inequalities (LMIs) such that the nominal, unforced time‐delay system is guaranteed to be globally asymptotically stable with minimum allowable disturbance attenuation level. Extending BRL, sufficient delay‐dependent criteria are developed for a stabilizing ?? controller synthesis involving a matrix inequality for which a nonlinear optimization algorithm with LMIs is proposed to get feasible solution to the problem. Moreover, for the case of existence of norm‐bounded uncertainties, both the BRL and ?? stabilization criteria are easily extended by employing a well‐known bounding technique. A plenty of numerical examples are given to illustrate the application of the proposed methodology of this note. The achieved numerical results on the maximum allowable delay bound and minimum allowable disturbance attenuation level are exhibited to be less conservative in comparison to those of existing methods in the literature. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
For analysis and design of fault‐tolerant control systems, it is very important to evaluate the effects of failures, especially the transient responses caused by failures. This paper considers the ??2 gain analysis of linear systems with a single switching, and gives necessary and sufficient conditions for the analysis. Also, the worst disturbance corresponding to the switching ??2 gain is explicitly characterized. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
This paper is concerned with regional stabilization of linear time-invariant systems by dynamic output feedback controllers subject to known bounds on the magnitudes of the control inputs. Specifically, we consider the achievable region of attraction, i.e. the set of vectors with the following property: There exists a (nonlinear) controller such that any closed-loop state trajectory converges to the origin as long as the initial state belongs the set. Two subsets of such set are characterized. One is derived from the linear analysis that considers the behavior of the states in the linear (non-saturated) region only, while the other is based on the nonlinear analysis using the multi-loop circle criterion. The main result of this paper shows that the two sets are exactly the same. Thus we conclude that the circle criterion does not help, within our framework, to increase the size of the region of attraction in saturating control synthesis when compared with that resulting from the linear analysis.  相似文献   

8.
This paper proposes a novel approach to the problem of ??2 disturbance attenuation with global stability for nonlinear uncertain systems by placing great emphasis on seamless integration of linear and nonlinear controllers. This paper develops a new concept of state‐dependent scaling adapted to dynamic uncertainties and nonlinear‐gain bounded uncertainties that do not necessarily have finite linear‐gain, which is a key advance from previous scaling techniques. The proposed formulation of designing global nonlinear controllers is not only a natural extension of linear robust control, but also the approach renders the nonlinear controller identical with the linear control at the equilibrium. This paper particularly focuses on scaled ?? control which is widely accepted as a powerful methodology in linear robust control, and extends it nonlinearly. If the nonlinear system belongs to a generalized class of triangular systems allowing for unmodelled dynamics, the effect of the disturbance can be attenuated to an arbitrarily small level with global asymptotic stability by partial‐state feedback control. A procedure of designing such controllers is described in the form of recursive selection of state‐dependent scaling factors. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
Linear parameter‐varying (LPV) systems provide a systematic framework for the study of nonlinear systems by considering a representative family of linear time‐invariant systems parameterized by system parameters residing in a compact set. The brief instability concept in such systems allows the linear system to be unstable for some trajectories of the LPV parameter set, so that instability occurs only for short periods of time. In the present paper, we extend the notion of brief instability to LPV systems with time delay in their dynamics. The results provide tools for the stability and performance analysis of such systems, where performance is evaluated in terms of induced ??2‐gain (or so‐called ?? norm). The main results of this paper illustrate that stability and performance conditions can be evaluated by examining the feasibility of parameterized sets of linear matrix inequalities (LMIs). Using the results of this paper, we then investigate analysis conditions to guarantee the asymptotic stability and ?? performance of fault‐tolerant control (FTC) systems, in which instability may take place for a short period of time due to the false identification of the fault signals provided by a fault detection and isolation (FDI) module. The numerical examples are used to illustrate the qualification of the proposed analysis and synthesis results for addressing brief instability in time‐delay systems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, we present a novel robust Iterative Learning Control (ILC) control strategy that is robust against model uncertainty as given by an additive uncertainty model. The design methodology hinges on ?? optimization, but formulated such that the obtained ILC controller is not restricted to be causal, and inherently operates on a finite time interval. Optimization of the robust ILC (R‐ILC) solution is accomplished for the situation where any information about structure in the uncertainty is discarded, and for the situation where the information about the structure in the uncertainty is explicitly taken into account. Subsequently, the convergence and performance properties of resulting R‐ILC controlled system are analyzed. On an experimental set‐up, we show that the presented R‐ILC control strategy can outperform an existing linear‐quadratic norm‐optimal ILC approach and an existing causal R‐ILC approach based on frequency domain ?? synthesis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
This paper deals with the problem of gain‐scheduled ??2 control for linear parameter‐varying systems. The system state–space model matrices are affinely parameterized and the admissible values of the parameters and their rate of variation are supposed to belong to a given convex bounded polyhedral domain. Based on a parameter‐dependent Lyapunov function, a linear matrix inequality methodology is proposed for designing a gain‐scheduled state feedback ??2 controller, where the feedback gain is a matrix fraction of polynomial matrices with quadratic dependence on the scheduling parameters. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
The paper addresses the problem of analysis and static output feedback control synthesis for strict quadratic dissipativity of linear time-invariant systems with state-space symmetry. As a particular case of dissipative systems, we consider the mixed H and positive real performance criterion and we develop an explicit expression for calculating the H norm of these systems. Subsequently, an explicit parametrization of the static output feedback control gains that solve the mixed H and positive real performance problem is obtained. Numerical examples demonstrate the use and computational advantages of the proposed explicit solutions.  相似文献   

13.
This paper investigates the problem of robust ?? static output feedback controller design for a class of discrete‐time piecewise‐affine systems with norm‐bounded time‐varying parametric uncertainties. The objective is to design a piecewise‐linear static output feedback controller guaranteeing the asymptotic stability of the resulting closed‐loop system with a prescribed ?? disturbance attenuation level. Based on a piecewise Lyapunov function combined with S‐procedure, Projection lemma, and some matrix inequality convexifying techniques, several novel approaches to the static output feedback controller analysis and synthesis are developed for the underlying piecewise‐affine systems. It is shown that the controller gains can be obtained by solving a set of strict linear matrix inequalities (LMIs) or a family of LMIs parameterized by one or two scalar variables, which are numerically efficient with commercially available software. Finally, three simulation examples are provided to illustrate the effectiveness of the proposed approaches. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
This paper proposes a state‐feedback control law for linear parameter‐varying (LPV) systems with input saturation and disturbances. The proposed control law employs two control parts: a main control part for reducing the restricted ??2 gain from the mismatched disturbance to the controlled output and an extra control part for eliminating the matched disturbance. Owing to this feature, the proposed control law provides a better disturbance attenuation performance than the conventional control law that deals with a unified disturbance regardless of the presence of matched and mismatched disturbances. Further, considering different forms of the feedback gain matrix K(θ(t)) and the Lyapunov function V(x(t)), three types of controllers are proposed. For each type, set invariance and the restricted ??2 gain performance conditions are first formulated in terms of parameterized linear matrix inequalities (PLMIs) and then converted into linear matrix inequalities (LMIs) by using a parameter relaxation technique. Results from the simulation of numerical examples confirm the effectiveness of the proposed controllers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
一种可保证瞬态特性的改进的鲁棒模型参考自适应控制   总被引:1,自引:0,他引:1  

针对典型的鲁棒模型参考自适应控制中瞬态性能无法得到保障的问题, 提出一种改进的鲁棒模型参考自适应控制器. 该控制器在标准的鲁棒自适应控制中加入??补偿器, 以抑制闭环自适应系统中参数估计误差和不确定扰动对系统输出跟踪性能造成的不利影响. 理论分析和仿真验证表明, 所提出的控制器不但保留了典型鲁棒模型参考自适应控制的理想特性, 并且通过设计适当的??∞ 补偿器使得闭环系统的瞬态性得到了较大的改善, 其改善的程度依赖于??∞ 补偿器性能指标的大小.

  相似文献   

16.
In this paper, we will first derive a general synthesis condition for the output‐feedback ?? control of smooth nonlinear systems. Computationally efficient ?? control design procedure for a subclass of smooth nonlinear systems with polynomial vector field is then proposed by converting the resulting Hamilton‐Jacobi‐Isaacs inequalities from rational forms to their equivalent polynomial forms. Using quadratic Lyapunov functions, both the state‐feedback and output‐feedback problems will be reformulated as semi‐definite optimization conditions and locally tractable solutions can be obtained through sum‐of‐squares (SOS) programming. The proposed nonlinear ?? design approach achieves significant relaxations on the plant structure compared with existing results in the literature. Moreover, the SOS‐based solution algorithm provides an effective computational scheme to break the bottleneck in solving nonlinear ?? and optimal control problems. The proposed nonlinear ?? control approach has been applied to several examples to demonstrate its advantages over existing nonlinear control techniques and its usefulness to engineering problems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, we present LMI-based synthesis tools for regional stability and performance of linear anti-windup compensators for linear control systems. We consider both static and dynamic compensators. Algorithms are developed that minimize the upper bound on the regional L2 gain for exogenous inputs with L2 norm bounded by a given value, and that minimize this upper bound with a guaranteed reachable set or domain of attraction. Based on the structure of the optimization problems, it is shown that for systems whose plants have poles in the closed left-half plane, plant-order dynamic anti-windup can achieve semiglobal exponential stability and finite L2 gain for exogenous inputs with L2 norm bounded by any finite value. The problems are studied in a general setting where the only requirement on the linear control system is well-posedness and internal stability. The effectiveness of the proposed techniques is illustrated with an example.  相似文献   

18.
In this paper the trajectory tracking control problem for a certain class of propagation processes modeled as quasi-linear parameter varying systems is considered. The propagation physical models are generally described by means of partial differential equations (PDEs). However in real world control problems the PDE models are usually converted into ordinary differential equations (ODEs) models adopting numerical and/or physical approximations. In many practical problems it happens that the propagation dynamics are linear, while the boundary conditions are described by nonlinear algebraic equations. A trajectory following control scheme is proposed for this class of systems together with a robust performance analysis based on the concept of quadratic stability with an H norm bound. An LMI based observer synthesis procedure is also proposed to increase the closed loop system performance.  相似文献   

19.
Motivated by a robust disturbance rejection problem, in which disturbances are described by an uncertain filter at the plant input, a convex solution is presented for the robust output feedback controller synthesis problem for a particularly structured plant. The uncertainties are characterized by an integral quadratic constraint (IQC) with general frequency‐dependent multipliers. By exploiting the structure of the generalized plant, linear matrix inequality (LMI)‐synthesis conditions are derived in order to guarantee a specified ??2‐gain or ??2‐norm performance level, provided that the IQC multipliers are described by LMI constraints. Moreover, it is shown that part of the controller variables can be eliminated. Finally, the rejection of non‐stationary sinusoidal disturbance signals is considered. In a numerical example, it is shown that specifying a bound on the rate‐of‐variation of the time‐varying frequency can improve the performance if compared with the static IQC multipliers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
An adaptive suboptimal control of a linear discrete system with unknown parameters is proposed. An additive disturbance vt acting on the system is supposed to be uniformly bounded. The criterion is supvtI(y1, u1), where yt is the output, ut is the control. The adaptive control law gives almost the same guaranteed value of the criterion as the optimal linear feedback does for a system with known parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号