共查询到19条相似文献,搜索用时 78 毫秒
1.
用无压浸渗法制备了铜.钛铝碳金属陶瓷材料(Cu-Ti3AlC2)。研究了Cu含量对反应产物的影响,测试了制备的Cu-Ti3AlC2样品的抗弯强度、硬度和导电率,并进行了显微结构观察和断口分析。结果表明,在适当的工艺条件下,当Cu含量在一定范围内,经无压烧结可获得高致密性的Cu-Ti3AlC2陶瓷块体材料。由于其特殊的显微结构,所制备的Cu-Ti3AlC2样品在保证导电率的同时其室温抗弯强度、硬度都大大超过单相钛铝碳陶瓷。 相似文献
2.
采用粉末冶金工艺制备Cu-Ti3AlC2金属陶瓷,借助XRD、SEM观察相成分和断口形貌,并研究Ti3AlC2增强相含量对产物密度、硬度、抗弯强度、断裂韧度和室温电导率的影响.结果表明,随着烧结温度的升高,Cu的衍射峰位置向左偏移,这与Al的固溶有关.随着Ti3AlC2含量的增加,金属陶瓷的密度和断裂韧度逐渐减小,硬度和电导率逐渐增大,抗弯强度先增大后减小.当Ti3AlC2含量为30%时,Cu-Ti3AlC2金属陶瓷综合性能最好,其硬度(HV)、抗弯强度、断裂韧度和电导率分别为1.7 GPa、733 MPa、9.3 MPa·m1/2和1.37×106 S·m-1. 相似文献
3.
通过无压烧结技术和机械合金化技术,在烧结温度为870 °C,保温时间为2.5h的工艺条件下,制备了四种不同体积含量的Ti3AlC2 颗粒含量的Ti3AlC2/ZA27复合材料。研究了Ti3AlC2 颗粒含量对Ti3AlC2 /ZA27复合材料的硬度,密度,拉伸强度和弯曲强度的影响。结果表明界面处的微弱的化学反应有助于提高复合材料的界面结合能力,进而提高Ti3AlC2 /ZA27复合材料的机械性能。此外,随着Ti3AlC2 颗粒含量增多,Ti3AlC2 /ZA27复合材料的硬度和力学强度都随之增大,这主要归因于纳米尺度的Ti3AlC2颗粒的弥散增强结果。然而,随着Ti3AlC2 颗粒的增加到40 vol. %, 由于孔隙的增多,Ti3AlC2 /ZA27复合材料的硬度和力学强度又出现下降。对比制得的四种Ti3AlC2 /ZA27复合材料,30Ti3AlC2/ZA27复合材料拥有最大的抗拉强度、抗弯曲强度以及维氏硬度,分别为310 MPa,528 MPa 和1.24 GPa. 这些优异的性能除了归因于良好的界面结合,还归因于Ti3AlC2颗粒的细晶强化和弥散强化作用。 相似文献
4.
热压烧结Ti3AlC2材料的制备、结构与性能研究 总被引:3,自引:0,他引:3
采用热压工艺研究了不同工艺制度和原料中不同的Si含量对Ti3AlC2合成的影响.研究表明在1 300℃~1 500℃,30MPa压力和Ar气氛中热压摩尔比为n(TiC)n(Ti)n(Al)n(Si)=2110.2的混合粉末,可以得到纯度达98%(质量分数)以上的致密块体Ti3AlC2材料;添加的Si均匀分布在基体中,形成固溶体,当添加Si的摩尔比为0.2时,固溶体的化学式为Ti2 76Al0 78Si0.22C2.烧结试样的晶体为层片状结构,1 300℃和1 400℃时,烧结试样的晶粒尺寸分别为10μm~15μm和20μm~30μm.材料的维氏硬度为3.3 GPa~5.0 GPa,弹性模量为289 GPa,抗压强度为785 MPa,抗弯强度为375 MPa,断裂韧性为7.0 MPa·m1/2;25℃时,电导率为3.1×106 S·m-1,热容为125.4 J/mol·K,热导率为27.5 W/m·K;热膨胀系数为8.8×10-6 K-1. 相似文献
5.
6.
原位热压反应制备Ti3AlC2/TiB2复合材料 总被引:1,自引:0,他引:1
Ti3AlC2综合了陶瓷和金属的诸多优点,有着潜在的广泛应用前景。然而,单相Ti3AlC2的硬度和强度偏低,限制了它的广泛应用。引入第二相形成复合材料是解决上述问题的一个有效方法。以Ti粉、Al粉、石墨和B4C粉为原料采用原位热压方法成功地合成了Ti3AlC2/TiB2复合材料。利用DSC和XRD对其反应路径作了详细研究,并利用SEM和TEM对复合材料的微观结构进行了表征,最后测试了复合材料的硬度和强度。结果表明用B4C-Ti-Al-C体系,可以在较低温度下合成致密的无杂质Ti3AlC2/TiB2复合材料;引入的TiB2明显提高了Ti3AlC2的硬度和强度。 相似文献
7.
8.
利用TiC粉、Ti粉和Al粉为原料,以摩尔比为TiCAlTi=21.21混合,通过无压烧结的方法合成高纯的Ti3AlC2粉末材料.研究了在不同的烧结温度(1200℃~1500℃)分别保温15 min,以及在1300℃下保温不同时间的烧结结果.最终得出结论,在1300℃~1400℃保温15 min后可以得到高纯度的Ti3AlC2材料,Ti3AlC2含量高达96.76ω/%.另外,由于1500℃时合成的样品中晶粒已经很大,使得其在做粉末X-射线衍射时很容易产生织构,使Ti3AlC2的{002}峰异常增强. 相似文献
9.
采用粉末冶金的方法在1000℃和30MPa的热压条件下,烧结制备了以Ti3AlC2为增强相的Ti3AlC2/Cu复合材料,研究了增强相含量(10%~40%)对复合材料的显微结构、抗弯强度、硬度和电阻率的影响。结果表明:Ti3AlC2能够有效增强铜,当Ti3AlC2含量为30%时,增强效果最佳,复合材料的抗弯强度达1033MPa,最大形变为2.5%,增强相含量继续增加时,复合材料的强度反而降低;随着增强相含量的增加,复合材料渐趋脆性断裂,同时复合材料的电阻率基本呈线性升高。 相似文献
10.
分别用3Ti-Al-2C和2TiC-Ti-Al粉用原位热压技术制备Ti3AlC2陶瓷.采用XRD、DTA、SEM等测试手段研究其物相组成、反应过程及显微结构.结果表明:1300 ℃下3Ti-Al-2C体系的合成产物为层状Ti3AlC2、TiC和Al2O3相,1500 ℃下2TiC-Ti-Al体系的合成产物基本为层状Ti3AlC2相,纯度较高.在Ti-Al-C体系中,首先发生Ti与C反应生成TiC,接着发生Ti与Al反应相继生成TiAl3和TiAl,随后发生TiAl和TiC反应生成Ti2AlC,最后Ti2AlC和TiC反应生成Ti3AlC2.同时,分析了TiC掺杂对TiC-Ti-Al体系原位合成Ti3AlC2的影响. 相似文献
11.
用无压浸渗法制备了铜-钛铝碳金属陶瓷材料(Cu-Ti3AlC2).研究了Cu含量对反应产物的影响,测试了制备的Cu-Ti3AlC2样品的抗弯强度、硬度和导电率,并进行了显微结构观察和断口分析.结果表明,在适当的工艺条件下,当Cu含量在一定范围内,经无压烧结可获得高致密性的Cu-Ti3AlC2陶瓷块体材料.由于其特殊的显微结构,所制备的Cu-Ti3AlC2样品在保证导电率的同时其室温抗弯强度、硬度都大大超过单相钛铝碳陶瓷. 相似文献
12.
采用粉末冶金的方法在1000℃和30 MPa的热压条件下,烧结制备了以Ti3AlC2为增强相的Ti3AlC2/Cu复合材料,研究了增强相含量(10%~40%)对复合材料的显微结构、抗弯强度、硬度和电阻率的影响.结果表明:Ti3AlC2能够有效增强铜,当Ti3AlC2含量为30%时,增强效果最佳,复合材料的抗弯强度达1033 MPa,最大形变为2.5%,增强相含量继续增加时,复合材料的强度反而降低;随着增强相含量的增加,复合材料渐趋脆性断裂,同时复合材料的电阻率基本呈线性升高. 相似文献
13.
Si掺杂放电等离子合成Ti2AlC/Ti3AlC2材料及理论分析 总被引:4,自引:0,他引:4
以Ti粉、Al粉、活性炭和Si粉为原料,采用放电等离子工艺分别以摩尔比为2.0Ti/1.1Al/1.0C、2.0Ti/1.0Al/0.1Si/1.0C、2.0Ti/1.0Al/0.2Si/1.0C、2.0Ti/0.9Al/0.2Si/1.0C和2.0Ti/1.0Al/0.3Si/1.0C,在1 200 ℃合成了Ti2AlC/Ti3AlC2块体材料.通过合成试样的X射线衍射谱,确定了放电等离子合成试样的物相组成,并用扫描电镜结合能谱仪观察了合成试样的显微结构和微区成分.结果表明:以2.0Ti/1.1Al/1.0C为原料放电等离子合成了层状结构明显的Ti2AlC材料;掺Si后所有试样都由Ti2AlC、Ti3AlC2和Ti3SiC2 3种物相组成;当掺Si量逐渐增大,即Al与Si的量比减小时,试样中Ti3AlC2和Ti3SiC2的含量增加,而Ti2AlC的含量降低,同时颗粒得到细化.应用量子化学计算结果解释了掺Si后不利于Ti2AlC的生成,而有利于Ti3AlC2的生成机理,说明了掺Si后固溶体的产生过程. 相似文献
14.
原位热压合成Ti3AlC2/Al2O3复合材料的研究 总被引:1,自引:0,他引:1
以Ti,Al,TiC,TiO2粉末为原料,采用原位热压合成法制备了Ti3AlC2/Al2O3复合材料。主要考察不同Al2O3含量对复合材料性能的影响。在1400℃,30MPa压力,保温2h条件下烧结制得致密的Ti3AlC2/Al2O3块体材料。采用XRD分析了不同Al2O3含量的复合材料的相组成。用SEM观察组织结构特征。测量了维氏硬度和电导率同Al2O3含量的关系曲线。研究结果表明,Al2O3的加入可大幅度提高复合材的硬度。Ti3AlC2/25%Al2O3的维氏硬度可达8.7GPa。虽然添加Al2O3后复合材料的电导率有所下降,但Al2O3对复合材料强度和硬度的增加有显著的贡献。Ti3Al2C2/Al2O3乃不失为一种性能良好的高温结材材料。 相似文献
15.
艾桃桃 《特种铸造及有色合金》2011,31(4):360-362,398
利用2TiC-Ti-Al体系的原位放热反应制备TiC/Ti3AlC2复合材料。借助XRD和SEM分析不同合成温度对应产物的相组成和微观结构,并测量其密度和抗压强度。结果表明,随着合成温度的升高,Ti3AlC2含量减小,TiC杂质相含量增大,层状或板状Ti3AlC2组织减少,大颗粒状TiC显著增多。经1350℃烧结后,合成产物中Ti3AlC2含量相对较高,其密度和抗压强度达4.03g/cm3和111.29MPa。 相似文献
16.
17.
采用放电等离子烧结方法研究了Ti3AlC2/TiB2复合材料的制备和不同TiB2含量(体积百分数)对Ti3AlC2/TiB2性能的影响。研究表明,在1250℃,30MPa压力和保温8min条件下烧结,可以得到相对密度达98%以上的致密Ti3AlC2/TiB2块体材料;在Ti3AlC2中添加TiB2能大幅度提高材料的硬度;Ti3AlC2/30%TiB2维氏硬度达到10.39GPa,电导率达到3.7×106S·m-1;当TiB2含量为10%时,抗弯强度为696MPa,断裂韧性为6.6MPa·m1/2,但当TiB2含量继续增加时,由于TiB2的团聚和TiB2抑制Ti3AlC2晶体的生长导致了材料的抗弯强度和断裂韧性的下降。 相似文献
18.
以自蔓延高温合成(SHS)的Ti2AlC粉体为原料,利用放电等离子烧结技术(SPS)研究了Ti2AlC陶瓷的烧结制备。结果表明:烧结温度1250℃,压力20MPa,真空烧结,保温5min,可获得相对密度98.6%,维氏硬度为4.3GPa的致密烧结块体;烧结样品的维氏硬度随烧结温度升高而增大,但高于1250℃后随温度升高反而减小,SPS方法烧结Ti2AlC陶瓷的最佳温度为1250℃,当烧结温度≥1350℃时Ti2AlC分解;SEM分析表明,SPS技术烧结制备的Ti2AlC陶瓷片层尺寸随烧结温度的升高而增大。 相似文献
19.
以单质粉末Ti,Al和碳黑为原料,研究了添加金属间化合物TiAl3对燃烧合成Ti3AlC的影响。实验结果表明,仅以单质粉末Ti,Al和碳黑为原料,按Ti3AlC化学计量比配料,燃烧产物主要物相是Ti2AlC和TiC,无Ti3AlC。但在保持原料配比不变的情况下,在反应物原料中添加金属间化合物TiAl3(0~23.5%,质量分数)后,可得到Ti3AlC相物质,其含量随TiAl3的增加而显著增多,成为燃烧产物的主要物相之一。从动力学和热力学角度探讨了TiAl3对燃烧合成Ti3AlC的影响机理。 相似文献