首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
在激光驱动飞片技术中,复合飞片的使用可提高对激光的能量利用率,从而获得更高的速度。为进一步研究复合飞片各层参数对激光驱动飞片速度的影响,采用Ti、C、Al2O3、Al等材料制备了不同参数的复合飞片,利用小型掺钕钇铝石榴石晶体ND:YAG固体激光器在200~300 mJ能量下进行了驱动飞片试验,并通过光子多普勒测速仪(PDV)对飞片速度进行了测试。结果表明,在厚度控制合理的情况下,增加了吸收层(0.15μm,Ti)的复合飞片最大速度较单层飞片提高了约110%,同时增加了烧蚀层(0.3μm,Al)和隔热层(1.0μm,Al2O3)的复合飞片最大速度较单层飞片提高了约41%,并对复合飞片的能量利用率及加速距离进行了分析,表明激光驱动复合飞片在0.02μs左右可达到最大速度的90%,在0.08μs左右可达到最大速度。  相似文献   

2.
王猛  覃文志  付秋菠  何碧  蒋明 《含能材料》2014,22(6):813-818
为有效提升激光冲击片雷管的能量利用率,需对雷管中的飞片结构进行设计和优化。在对飞片进行结构设计的基础上,采用磁控溅射和扫描电镜(SEM)的方法完成了C/Al/Al2O3/Al飞片的制备和表征,获得了飞片各层的制备速率和表面形貌;采用光子多普勒测速系统(PDV)测试了不同参数C/Al/Al2O3/Al飞片的加速历程,发现在相同激光入射能量下,不同参数飞片的加速历程有所不同,设计制备的0.05/0.7/0.7/20.0μm复合飞片(Φ1.0mm)能量利用率最高,飞片速度达到2301 m·s-1。结合飞片各层材料的物理特性分析得到,石墨吸收层的反光系数、汽化能与导热性能,及Al2O3隔热层的表观致密度、电离势能和导热性能直接影响飞片的速度,而飞片加速时间与石墨吸收层较高的导热率相关。  相似文献   

3.
飞片速度是冲击片雷管能否可靠起爆的一个关键因素,为了深入研究加速膛参数对飞片速度的影响,分别通过实验和数值模拟方法对飞片速度的影响因素进行分析。采用磁控溅射技术设计制备了一种膜层厚度为0.5/0.5/2 μm,尺寸为0.15 mm×0.15 mm的TiW/Ni/Au复合薄膜爆炸箔。在激励条件为0.1 μF、1200 V下,选用密度为1.45 g·cm-3,厚度为25 μm的聚酰亚胺飞片,利用光子多普勒速度测试技术测量了不同加速膛参数的飞片速度。研究结果显示:在相同孔径条件下,当加速膛厚度分别为0.3,0.4,0.5,0.6 mm时,随着加速膛厚度的增加,飞片速度先增后减,在厚度为0.4 mm时达到最高值;在相同厚度条件下,当加速膛孔径分别为0.15,0.23,0.3,0.35,0.45 mm时,飞片速度随孔径增加而降低,其中孔径为0.15 mm时速度最高;此外,在相同孔径和厚度下,飞片经过聚酰亚胺和陶瓷两种材质的加速膛测试得到的速度变化趋势和数值相近,而聚酰亚胺具有较高的强度和韧性,成本更低,因此可替代陶瓷作为加速膛材料。同时采用数值模拟方法重新拟合了适用于TiW/Ni/Au复合薄膜的飞片速度经验公式,验证结果表明,计算结果与实验数据的偏差均在2.5%以内。  相似文献   

4.
加速膛与复合飞片对集成爆炸箔起爆器性能的影响   总被引:4,自引:3,他引:1  
采用微机电系统制造技术实现了爆炸箔起爆器的集成制备。利用磁控溅射工艺和化学气相沉积技术制备了0.4 mm(L)×0.4 mm(W)×4.6μm(H)的Cu桥箔、聚氯代对二甲苯(Parylene C)(25μm)/Cu(2μm)复合飞片层;利用紫外光刻技术实现了环氧树脂干膜(SUEX)加速膛的制备,获得了厚度为0.395 mm,直径为0.40,0.56,1.00 mm的三种加速膛,且壁面垂直度均良好。通过光子多普勒速度(PDV)测试系统,研究了发火电压与加速膛尺寸对复合飞片速度的影响。进行了起爆六硝基茋(HNS)炸药的爆轰试验。结果表明,复合飞片的速度随着发火电压的增加逐渐增大;在相同发火条件下,复合飞片的速度随着加速膛直径的减小反而逐渐增加,即在同一发火条件下Ф0.40 mm的加速膛下获得的复合飞片速度最大。起爆HNS炸药的试验结果显示,发火电压随着加速膛直径的减小逐渐降低;相对于Ф1.00 mm的加速膛,Φ0.40 mm的加速膛在0.22μF电容放电条件下,发火电压降低了200 V左右。  相似文献   

5.
低温共烧陶瓷爆炸箔起爆芯片的设计、制备与发火性能   总被引:1,自引:0,他引:1  
张秋  陈楷  朱朋  徐聪  覃新  杨智  沈瑞琪 《含能材料》2019,27(6):448-455
采用低温共烧陶瓷(Low Temperature Co-fired Ceramics,LTCC)工艺实现了爆炸箔起爆芯片的一体化集成制备。采用丝网印刷的方式制备了厚度为5μm的Au桥箔(300μm×300μm);采用25μm和50μm两种厚度的生瓷片作为爆炸箔起爆芯片的飞片,设计了圆形(Ф=400μm)和方形(L×W=300μm×300μm)的两种加速膛形状的爆炸箔起爆芯片。在0.22μF电容放电条件下,研究了Au桥箔的电爆性能。通过光子多普勒测速技术分析了陶瓷飞片的速度特征及其运动过程中的形貌。结果表明,在发火电压1.8 kV下,Au桥箔的能量利用率最大;飞片的终态速度随着发火电压的增加而增大;在相同的发火条件下,飞片经方形加速膛加速后的出口速度比圆形加速膛高出106~313 m·s~(-1);另外,陶瓷飞片越厚,飞片在飞行过程中的运动形貌保持得越完整。该工艺制备的爆炸箔起爆芯片可成功点燃硼/硝酸钾(BPN)点火药,并起爆六硝基芪(HNS)炸药。LTCC爆炸箔起爆芯片(50μm厚陶瓷飞片,圆形加速膛)的最小点火电压为1.4 kV,最小起爆电压为2.5 kV。  相似文献   

6.
一种原位集成冲击片组件的制备及飞片驱动性能   总被引:1,自引:1,他引:0  
为研究冲击片集成组件制造方法及其性能,采用化学气相沉积法(CVD)在爆炸箔基底上沉积制备了聚氯代对二甲苯(PC)飞片层,并且利用光刻方法原位集成了Su8-2150光刻胶加速膛,获得的加速膛厚度大于300μm且壁面垂直度良好。利用光子多普勒速度(PDV)测量技术获得了该冲击片组件电爆炸驱动飞片的加速历程。对比了常规方法制造的冲击片组件(聚酰亚胺飞片)与相同参数集成冲击片组件的飞片加速历程。结果表明,两组加速历程基本一致。聚酰亚胺飞片与PC飞片在前80 ns内分别达到了最大速度的77%与80%,加速膛出口处飞片速度分别为3970 m·s~(-1)和3906 m·s~(-1),两种冲击片组件驱动性能接近,飞片和加速膛的材料的改变对电爆炸驱动飞片过程未产生明显影响。  相似文献   

7.
采用MEMS工艺制作了微冲击片换能元,研究了桥箔、飞片、加速膛的微观形貌,并通过测试桥箔电爆性能、飞片速度和微冲击片换能元的发火性能,研究了桥箔厚度、飞片坚膜工艺、加速膛高度等对微换能元的起爆性能影响。研究表明:采用SU-8胶制作飞片、加速膛,并对飞片进行坚膜工艺处理,以及选择3.3μm厚度的桥箔和201μm高度的加速膛,可使微冲击片换能元具有更好的发火性能。  相似文献   

8.
为提高RDX驱动台阶式飞片的可靠性,基于光子多普勒测速技术(Photonic Doppler Velocimetry,PDV)搭建了激光点火RDX驱动台阶式钛合金飞片的速度测试系统,试验研究了RDX装药量、飞片剪切厚度及飞片厚度对飞片速度的影响。结果表明:当装药量从40 mg增加至85 mg,飞片峰值速度由494.46 m·s-1线性增加至591.86 m·s-1;当飞片剪切厚度从0.2 mm增加至0.8 mm,飞片峰值速度由508.98 m·s-1线性增加至557.53 m·s-1;当飞片厚度从1.0 mm增加至2.5 mm,飞片峰值速度由561.32 m·s-1指数衰减至397.34 m·s-1,同时飞片动能由1.347J线性增加至1.688 J。因此,通过增加RDX装药量、飞片剪切厚度或飞片厚度可以提高RDX驱动飞片冲击起爆的可靠性。  相似文献   

9.
为优化传爆序列中传爆药驱动飞片性能,建立小尺寸传爆药驱动飞片作动的仿真模型,提出了一种获取传爆药爆轰产物JWL状态方程参数的计算方法。设计了典型传爆药JO-9C驱动飞片试验,验证了仿真模型和计算方法的准确性。提出了采用飞片速度和动能共同作为其效能评价的参量,研究装药结构、加速膛直径和飞片厚度等因素对飞片效能的影响规律。结果表明:装药长径比为1.5时可兼顾飞片速度与装药量;加速膛直径应不大于装药直径,可获得良好飞片形貌及较高飞行速度;飞片厚度过薄可能会出现断裂。以5 mm直径JO-9C装药结构为例,最优设计为:装药长径比为1.5,即装药高度为7.5 mm,加速膛直径为5 mm,飞片厚度为0.3 mm,此时飞片速度为1 663 m/s,动能为51.79 J.  相似文献   

10.
PDV方法测量电爆炸驱动小飞片速度   总被引:6,自引:5,他引:1  
为优化爆炸箔起爆器性能,采用光子多普勒速度测量技术(PDV)获得了电爆炸驱动小飞片的速度历程。设计了一种电爆炸驱动小飞片测试装置,可以产生Φ0.35 mm×25μm尺寸的小飞片,试验中未对飞片进行任何处理。对两发电爆炸驱动小飞片进行了PDV测速试验,获得了小飞片的速度历程,测得的有效时长约为160 ns。两发飞片的最大速度分别为4520 m·s-1和4330 m·s-1,速度差约为4%,一致性较好。飞片速度剖面有明显拐点。在拐点之前速度上升较快,在60 ns(0.1 mm位移)内达到了最终速度的75%。在拐点之后,速度上升相对变缓,在100 ns内完成了剩余25%速度的增加。  相似文献   

11.
激光驱动飞片飞行特征研究进展   总被引:1,自引:1,他引:0  
激光驱动飞片是高效的冲击加载方法,作为激光起爆炸药的一种方式,具有本质安全性。激光驱动飞片起爆炸药的可靠度与飞片的飞行特性密切相关,飞片的飞行速度和表观形貌(平面度和完整性)是成功起爆的两个重要参数。因此,从飞片的飞行特性的表征手段与影响因素两方面出发,综述了激光驱动飞片技术的研究进展。针对单层飞片,介绍了观测、表征和接收方法,分析讨论了飞片性能影响因素作用规律的近年研究成果,梳理归纳了现有研究中存在的不足,指出了今后的发展方向,包括激光驱动飞片飞行过程的系统物理模型和激光驱动飞片的平面度和完整性定量参数。  相似文献   

12.
激光驱动飞片技术的研究进展   总被引:5,自引:0,他引:5  
激光驱动飞片技术具有产生的飞片速度高、装置简单、成本低等传统动高压加载技术无法取代的优点。在飞片的激光驱动原理、靶材结构、激光驱动飞片的性能测试和表征,以及激光驱动飞片技术在高压物理学、空间科学、材料微成形技术和炸药快速起爆技术中的应用等方面的研究进展进行了评述,指出了未来激光驱动飞片技术的研究和应用的发展方向。  相似文献   

13.
爆炸箔尺寸对飞片速度的影响   总被引:3,自引:0,他引:3  
爆炸箔是冲击片雷管的关键部件,为了获得爆炸箔的厚度和桥区尺寸对冲击片雷管飞片速度的影响,通过光纤台阶法测试了不同厚度和桥区尺寸的爆炸箔驱动飞片的情况。结果表明:在电压3.4 kV、电流3.5 kA的起爆条件下,最佳的爆炸箔厚度为3.67μm,可以驱动飞片产生2 307 m/s的速度;随着爆炸箔桥区尺寸的减小,飞片速度逐渐提高。因此,可以看出在一定的起爆能量下,驱动飞片达到最大速度的爆炸箔存在一个最佳厚度值;在爆炸箔厚度一定的情况下,减小爆炸箔的桥区尺寸,可以提高爆炸箔驱动飞片的能力,从而可以达到降低冲击片雷管起爆能量阈值的目的。  相似文献   

14.
钝感HNS-IV 炸药飞片冲击起爆数值仿真   总被引:1,自引:0,他引:1       下载免费PDF全文
为获得HNS-IV在飞片冲击下的窄脉冲宽度的起爆特性,使用Lee-Tarver点火增长模型和有限元分析软件,对不同直径、厚度的聚酰亚胺飞片撞击HNS-IV炸药过程进行数值模拟.按照试验装置的设计方案,建立数值模拟模型,对不同直径、厚度飞片冲击起爆HNS-IV炸药的机理及影响规律进行分析.仿真结果表明:在飞片厚度一定的条件下,飞片直径增大相应的引爆阈值压力和引爆阈值速度减小;在飞片直径一定的条件下,随着飞片厚度的增加,炸药的引爆阈值压力和引爆阈值速度减小;随着炸药密度的降低,炸药阈值引爆的飞片速度也随之减小.对于HNS-IV炸药,计算所得引爆阈值压力和脉冲持续时间经拟合后所得曲线满足constnpτ=的判据,确定其临界起爆能量.  相似文献   

15.
Al/Ni爆炸箔电爆特性及驱动飞片能力研究   总被引:1,自引:0,他引:1  
利用传统的MEMs工艺成功制备出Al/Ni复合爆炸箔,在4k V的充电电压下研究其电爆性能。研究表明,相比于传统的铜爆炸箔,复合爆炸箔的能量利用高,可达18%,而且爆发提前,所需能量较小,爆发能量集中。飞片速度研究表明,爆炸箔的厚度和充电电压会影响飞片的最终速度,飞片的速度随爆炸箔的厚度和电压升高而增大。当爆炸箔的厚度为3μm、充电电压为5k V时,飞片的速度可达3 100m/s。  相似文献   

16.
一种小型炸药驱动飞片装置的试验与数值模拟研究   总被引:1,自引:1,他引:1  
设计了一种速度可调的小型炸药驱动飞片装置,进行了不同密度的PETN炸药驱动飞片实验,利用VISAR激光速度干涉仪测量了飞片速度历程;采用VLW状态方程计算了PETN炸药不同密度的JWL状态方程,得到了JWL状态方程参数,进而通过显式动力学有限元程序Ansys/Ls-dyna模拟计算出飞片速度,其结果与试验结果基本吻合,验证了通过数值模拟计算飞片起爆速度的可行性;得到了飞片起爆速度与炸药密度的关系,飞片起爆速度可在2660~3150m.s-1之间调节,对应压力范围为54~86GPa。  相似文献   

17.
程兵  汪海波  宗琦 《含能材料》2020,28(4):300-307
为了进一步研究切缝药包爆破机理,在AUTODYN内运用光滑粒子流体动力学与有限单元(SPH FEM)耦合法构建了装药不耦合系数为2.0的切缝药包爆破模型,分析装药爆炸初期的爆轰产物膨胀过程、爆轰产物粒子运动速度及炮孔周围岩体损伤演化历程。结果表明:对于切缝方向,由于没有切缝管的约束作用,爆轰产物粒子能够以较高的速度向前运动,粒子最大运动速度可达到4750m s^-1,最前端粒子在3.5μs到达孔壁,切缝方向岩体开始产生损伤破坏,且随着切缝管内爆轰产物的继续膨胀,切缝方向岩体进一步受到破坏;对于非切缝方向,切缝管的约束作用使得爆轰产物粒子膨胀受阻,粒子最大运动速度仅为800 m s^-1,同时切缝管在爆轰产物的推动下缓慢向炮孔壁运动,12.6μs切缝管到达炮孔壁,非切缝方向岩体开始产生损伤,但损伤展布区域较小,且非切缝方向炮孔壁保持了较好的完整性。  相似文献   

18.
为了考察调制周期对反应薄膜性能的影响,采用磁控溅射技术制备了厚度为3μm,调制周期为50,150 nm和300 nm的Al/MoO3反应薄膜,采用差示扫描量热仪(DSC)探索了调制周期对Al/MoO3反应薄膜放热过程和反应活化能的影响;使用高速摄影和激光点火技术研究了三种调制周期反应薄膜的燃烧速率,通过与半导体桥和桥丝融合形成含能点火器件,考察了调制周期对电流和电压发火感度的影响。结果显示调制周期由50 nm增加到300 nm时,Al/MoO3反应薄膜燃烧速率由5.35 m·s^-1降低到1.75 m·s^-1。三种调制周期(50,150,300 nm)Al/MoO3反应薄膜半导体桥点火器件的50%电流发火电流分别为1.44,1.74 A和1.87 A;Al/MoO3反应薄膜桥丝点火器件的50%发火电流分别为0.08,0.65 A和1.02 A;将Al/MoO3反应薄膜与半导体桥和桥丝换能元结合形成点火器件,在点火间隙为1 mm的情况下,能够点燃钝感点火药硼-硝酸钾(B-KNO3)药片,提升点火系统的点火能力和可靠性。  相似文献   

19.
冲击片雷管研究与发展   总被引:2,自引:0,他引:2  
简要叙述了冲击片雷管的发展与应用,描述了其设计原理和简要结构,详细介绍了影响冲击片雷管性能的主要参数,如各主要元件的功能、材料、几何尺寸以及选取原则等,并指出了冲击片雷管研制中急需解决的一些问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号