首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of nucleating agents on the crystallization behavior of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) was studied. A differential scanning calorimeter was used to monitor the energy of the crystallization process from the melt and melting behavior. During the crystallization process from the melt, nucleating agent led to an increase in crystallization temperature (Tc) of PHBV compared with that for plain PHBV (without nucleating agent). The melting temperature of PHBV changed little with addition of nucleating agent. However, the areas of two melting peaks changed considerably with added nucleating agent. During isothermal crystallization, dependence of the relative degree of crystallization on time was described by the Avrami equation. The addition of nucleating agent caused an increase in the overall crystallization rate of PHBV, but did not influence the mechanism of nucleation and growth of the PHB crystals. The equilibrium melting temperature of PHBV was determined as 187°C. Analysis of kinetic data according to nucleation theories showed that the increase in crystallization rate of PHBV in the composite is due to the decrease in surface energy of the extremity surface. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2145–2152, 2002  相似文献   

2.
The effect of lignin fine powder, as a new kind of nucleating agent, on the crystallization process of poly(3‐hydroxybutyrate) (PHB) was studied. The kinetics of both isothermal and nonisothermal crystallization processes from the melt for both pure PHB and PHB/lignin blend was studied by means of differential scanning calorimetry. Lignin shortened the crystallization half‐time t1/2 for isothermal crystallization. The activation energy ΔE for PHB/lignin and pure PHB in the isothermal crystallization process was ?237.40 and ?131.22 kJ/mol, respectively, clearly indicating that the crystallization of the PHB/lignin blend was more favorable than that of pure PHB from a thermodynamic perspective. At the same time, according to polarized optical microscopy, the rate of spherulitic growth from the melt increased with the addition of lignin, which is ascribed to the reduction of surface fold energy σe, that is, σe is 59.2 × 10?3 and 41.6 × 10?3 J m?2 for pure PHB and PHB/lignin, respectively. Polarized optical microscopy also showed that the spherulites found in PHB with lignin were smaller in size and greater in number than those found in pure PHB. The wide‐angle X‐ray diffraction indicated that an addition of lignin caused no change in the crystal structure and degree of crystallinity. These results indicated that lignin is a good nucleating agent for the crystallization of PHB. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2466–2474, 2004  相似文献   

3.
The kinetics of crystallization induced by orotic acid (OA) and boron nitride (BN) as nucleating agents were investigated for bacterial poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate)s (P(HB‐co‐HH)s) containing from 0 to 18% HH monomer units. The nucleation efficiency of these two chemicals was investigated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). It was found that both orotic acid and boron nitride are able to nucleate the crystallization of PHB. In the case of P(HB‐co‐HH) copolymers, orotic acid showed an outstanding nucleating effect. The comparison of half‐crystallization times shows that for P(HB‐co‐10% HH), the crystallization initiated by orotic acid is more than three time faster than the one induced by boron nitride (t1/2BN/t1/2OA(60°C) = 3.7 and t1/2BN/t1/2OA(90°C) = 4.5). According to the fact that orotic acid is a biodegradable, biocompatible and a nontoxic chemical, this nucleating agent is a promising solution for PHAs used in medical applications such as implants. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
Thermal properties of blends of poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV) and poly(styrene‐co‐acrylonitrile) (SAN) prepared by solution casting were investigated by differential scanning calorimetry. In the study of PHBV‐SAN blends by differential scanning calorimetry, glass transition temperature and melting point of PHBV in the PHBV‐SAN blends were almost unchanged compared with those of the pure PHBV. This result indicates that the blends of PHBV and SAN are immiscible. However, crystallization temperature of the PHBV in the blends decreased approximately 9–15°. From the results of the Avrami analysis of PHBV in the PHBV‐SAN blends, crystallization rate constant of PHBV in the PHBV‐SAN blends decreased compared with that of the pure PHBV. From the above results, it is suggested that the nucleation of PHBV in the blends is suppressed by the addition of SAN. From the measured crystallization half time and degree of supercooling, interfacial free energy for the formation of heterogeneous nuclei of PHBV in the PHBV‐SAN blends was calculated and found to be 2360 (mN/m)3 for the pure PHBV and 2920–3120 (mN/m)3 for the blends. The values of interfacial free energy indicate that heterogeneity of PHBV in the PHBV‐SAN blends is deactivated by the SAN. This result is consistent with the results of crystallization temperature and crystallization rate constant of PHBV in the PHBV‐SAN blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 673–679, 2000  相似文献   

5.
The thermal decomposition mechanism of maleated poly(3‐hydroxybutyrate) (PHB) was investigated by FTIR and 1H NMR. The results of experiments showed that the random chain scission of maleated PHB obeyed the six‐membered ring ester decomposition process. The thermal decomposition behavior of PHB and maleated PHB with different graft degree were studied by thermogravimetry (TGA) using various heating‐up rates. The thermal stability of maleated PHB was evidently better than that of PHB. With increase in graft degree, the thermal decomposition temperature of maleated PHB gradually increased and then declined. Activation energy Ea as a kinetic parameter of thermal decomposition was estimated by the Flynn‐Wall‐Ozawa and Kissinger methods, respectively. It could be seen that approximately equal values of activation energy were obtained by both methods. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1789–1796, 2002; DOI 10.1002/app.10463  相似文献   

6.
Water sorption and diffusion have been investigated in poly(3‐hydroxybutyrate) (PHB) and three poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) copolymers [P(HB‐HV)] by means of a Cahn electromicrobalance. Permeability of these samples have been determined using a gravimetric permeation cell. Two experimental setups were used for the gravimetric sorption measurements, under dynamic and static conditions, respectively. The differences observed in the results obtained using these techniques are discussed. The sorption measurements have evidenced the tendency of water molecules to form aggregates or clusters in the polymer. In addition, the static sorption method revealed the potential of PHB and P(HB‐HV) to undergo molecular relaxations, eventually leading to a partial desorption of the previously sorbed water after an induction period. The clustering effect was adequately described by the polycondensation model. On the other hand, the interpretation of the diffusivity in terms of mobility coefficients has revealed a competition between a plasticization effect and clustering. As a whole, water transport properties in PHB and its copolymers can be considered to be very close in magnitude to those of common thermoplastics such as PVC and PET. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 455–468, 1999  相似文献   

7.
The mechanism involved in the crystallization of bacterial polyhydroxybutyrate (PHB) and poly(hydroxybutyrate‐co‐hydroxyhexanoate) P(HB‐co‐HH) induced by orotic acid as a nucleant was investigated by using differential scanning calorimetry (DSC), gel permeation chromatography (GPC) and proton nuclear magnetic resonance spectroscopy (1H‐NMR). GPC measurements both carried on solvent cast and hot pressed samples did not show any significant drop of the molecular weight caused by the addition of the nucleant, indicating that no chemical reaction happened during the nucleation process. This result was confirmed by 1H‐NMR analysis of oligohydroxybutyrate (OHB) treated with an excess amount of orotic acid. The possibility of epitaxial growth of the polymer crystal on the surface of the nucleant crystal was then investigated. It was found that there is an outstanding crystalline lattice matching between the plane (100) of the PHB crystal and the plane (001) of the orotic acid crystal. In comparison, the matching obtained with conventional nucleating agents, such as boron nitride and talc, was worse. Moreover, some regular hydrogen bonds between the polyester and orotic acid could stabilize the physical process. According to these results, the physical mechanism involving the epitaxial matching between orotic acid and PHB appears to be the most probable nucleation mechanism. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
Boron nitride (BN), talc, hydroxyapatite (HA), and zinc stearate (ZnSt) were investigated as nucleation agents (NA) for nonfossil‐based poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) (P3/4HB) plastics. Nonisothermal crystallization behaviors of the P3/4HB/NA blends were examined by DSC. It revealed that BN is the most efficient nucleation agent to promote the crystallization rate, however, but not the crystallization degree. The lasting crystallization of P3/4HB was also removed. The nucleation effect was strengthened with increase of BN content up to 1% and then slackened deeply when further BN was added. Isothermal crystallization analysis revealed that the addition of nucleation agent BN does not alter the crystal growth mode of P3/4HB, with maintaining the Avrami parameter n value around 2.40. Talc did enhance the crystallization of P3/4HB with however milder crystal growth rate. HA and ZnSt did not promote, but depressed the crystallization of P3/4HB plastics. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
Poly(N‐vinylpyrrolidone) (PVP) groups were grafted onto poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) backbone to modify the properties of PHBV and synthesize a new novel biocompatible graft copolymer. The effect of graft modification with PVP on the thermal and mechanical properties of PHBV was investigated. The thermal stability of grafted PHBV was remarkably improved while the melting temperature (Tm) was almost not affected by graft modification. The isothermal crystallization behavior of samples was observed by polarized optical microscopy and the results showed that the spherulitic radial growth rates (G) of grafted PHBV at the same crystallization temperature (Tc) decreased with increasing graft yield (graft%) of samples. Analysis of isothermal crystallization kinetics showed that both the surface free energy (σe) and the work of chain‐folding per molecular fold (q) of grafted PHBV increased with increasing graft%, implying that the chains of grafted PHBV are less flexible than ungrafted PHBV. This conclusion was in agreement with the mechanical testing results. The Young's modulus of grafted PHBV increased while the elongation decreased with increasing graft%. The hydrophilicity of polymer films was also investigated by the water contact angle measurement and the results revealed that the hydrophilicity of grafted PHBV was enhanced. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Poly(3‐hydroxybutyrate) (PHB) has been shown to be efficiently nucleated by exfoliated graphite nanoplatelets (xGnP). The nucleating effect of xGnP was investigated using differential scanning calorimetry, optical microscopy and atomic force microscopy. Nonisothermal crystallization of PHB from the melt required lower activation energies for PHB containing 1 wt % and 3 wt % xGnP (?214 and ?102 kJ/mol respectively) than for pure PHB (?60 kJ/mol). A kinetic study of the PHB/xGnP crystallization employing a modified form of the Avrami equation revealed that the presence of xGnP increased the PHB crystallization temperature, as well as the crystallization rates, and generated smaller and more numerous spherulites. Optical microscopy and atomic force microscopy confirmed the incorporation of xGnP into the lamellar structure of the PHB spherulites and provided insight into the influence of xGnP on spherulite size and lamellae thickness. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

11.
CO2 sorption and diffusion in poly(3‐hydroxybutyrate) and three poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) copolymers were investigated gravimetrically at temperatures from 25° to 50°C and pressures up to 1 atm. The sorption behavior proved to be linear for all the copolymers studied. An additional set of measurements performed in a pressure decay apparatus at 35°C showed that the linearity could be extrapolated to pressures up to 25 atm. The sorption results obtained from both techniques were in good agreement. The poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) sorption kinetics were increasingly non‐Fickian at the higher temperatures, thus preventing the calculation of diffusion coefficients above 35°C. Interestingly, this was not the case for poly(3‐hydroxybutyrate), and diffusion coefficients and permeabilities could be calculated at all of the investigated temperatures. The 35°C permeabilities were fairly low, which is attributed to the high degree of crystallinity of this polyester family. Finally, the poly(3‐hydroxybutyrate) barrier properties against CO2 are successfully compared with those of some selected common thermoplastics. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 2391–2399, 1999  相似文献   

12.
Graft copolymerization of maleic anhydride (MA) onto poly(3‐hydroxybutyrate) (PHB) was carried out by use of benzoyl peroxide as initiator. The effects of various polymerization conditions on graft degree were investigated, including solvents, monomer and initiator concentrations, reaction temperature, and time. The monomer and initiator concentrations played an important role in graft copolymerization, and graft degree could be controlled in the range from 0.2 to 0.85% by changing the reaction conditions. The crystallization behavior and the thermal stability of PHB and maleated PHB were studied by DSC, WAXD, optical microscopy, and TGA. The results showed that, after grafting MA, the crystallization behavior of PHB was obviously changed. The cold crystallization temperature from the glass state increased, the crystallization temperature from the melted state decreased, and the growth rate of spherulite decreased. With the increase in graft degree, the banding texture of spherulites became more distinct and orderly. Moreover, the thermal stability of maleated PHB was obviously improved, compared with that of pure PHB. Its thermal decomposition temperature was enhanced by about 20°C. In addition, the introduction of the MA group promoted the biodegradability of PHB. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 659–668, 2003  相似文献   

13.
Effects of cyanuric acid (CA) on nonisothermal and isothermal crystallization, melting behavior, and spherulitic morphology of bacterial copolyesters of poly(3‐hydroxybutyrate), i.e., poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) and poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) (PHBH), have been investigated. CA has excellent acceleration effectiveness on the melt crystallization of bacterial PHB, PHBV, and PHBH, better than the nucleating agents reported in the literatures, such as boron nitride, uracil, and orotic acid. PHBV and PHBH do not crystallize upon cooling from the melt at 10°C/min, while they are able to complete crystallization under the same conditions with an addition of 1% CA, with a presence of sharp crystallization exotherm at 75–95°C. Isothermal crystallization kinetics of neat and CA‐containing PHBV and PHBH were analyzed by Avrami model. Crystallization half‐times (t1/2) of PHBV and PHBH decrease dramatically with an addition of CA. The melting behavior of isothermally melt‐crystallized PHBV and PHBH is almost not influenced by CA. Spherulitic numbers of PHBV and PHBH increase and the spherulite sizes reduce with an incorporation of CA. Nucleation densities of PHBV and PHBH increase by 3–4 orders of magnitude with a presence of 1% CA. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
In order to modify poly [(3‐hydroxybutyrate)‐co‐(3‐hydroxyvalerate)] (PHBV), the crosslinking of this copolymer was carried out at 160 °C using dicumyl peroxide (DCP) as the initiator. The torque of the PHBV melt showed an abrupt upturn when DCP was added. Appropriate values for the gel fraction and crosslink density were obtained when the DCP content was up to 1 wt% of the PHBV. According to the NMR spectroscopic data, the location of the free radical reaction was determined to be at the tertiary carbons in the PHBV chains. The melting point, crystallization temperature and crystallinity of PHBV decreased significantly with increasing DCP content. The effect of crosslinking on the melt viscosity of PHBV was confirmed as being positive. Moreover, the mechanical properties of PHBV were improved by curing with DCP. When 1 wt% DCP was used, the ultimate elongation of PHBV increased from 4 to 11 %. A preliminary biodegradation study confirmed the total biodegradability of crosslinked PHBV. Copyright © 2004 Society of Chemical Industry  相似文献   

15.
A series of compounds having hydrazide groups was prepared and evaluated as nucleating agent for poly(L ‐lactic acid) by differential scanning calorimetry. Hydrazide compounds derived from benzoic acid, 2‐hydroxybenzoic acid, 3‐tert‐butylbenzoic acid, and 2‐aminobenzoic acid, where two of hydrazide compounds connected by four methylene chain were evaluated in series. Benzoylhydrazide type was found to be more effective on the enhancement of crystallization of poly(L ‐lactic acid). Effects of connecting length of methylene chain numbers between two of benzoylhydrazide on the nucleation ability were also evaluated. Benzoylhydrazide‐type compound having 10 methylenes, that is, decamethylenedicarboxylic dibenzoylhydrazide demonstrated excellent nucleation ability, and the resulted crystallization temperature and enthalpy of PLA with the compound of 1 wt % loading were 131°C and 46 J g?1. The achieved crystallization temperature and enthalpy were over 10°C and over 10 J g?1 higher than PLA with conventional nucleating agents, such as talc and ethylenebis (12‐hydroxystearylamide). Thus, the improvement in processability, productivity, and heat resistance of PLA is suggested to be achieved by using decamethylenedicarboxylic dibenzoylhydrazide as a nucleating agent. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 198–203, 2007  相似文献   

16.
BACKGROUND: The thermomechanical performance of poly[(3‐hydroxybutyrate)‐co‐(3‐hydroxyvalerate)] (PHBV) is associated with its crystallization. Enhanced nucleation using a stearate‐functionalized synthetic layered double hydroxide (LDH) presents a potential solution. RESULTS: PHBV crystallization varied with concentration of LDH. At lower LDH concentration, thermal history‐induced cold crystallization was present. The extent of this order–disorder transition decreased with increasing LDH concentration and was completely eliminated at 7 wt% LDH. PHBV did not have a melt recrystallization peak but the introduction of LDH resulted in an increasingly pronounced melt recrystallization with increasing LDH concentration. Polarized optical microscopy coupled with differential scanning calorimetry and wide angle X‐ray diffraction (WAXD) analysis indicated increased lamella thickness in the nanocomposites compared to pure PHBV. WAXD and transmission electron microscopy showed that the nanocomposites had an intercalated but aggregated dispersion. CONCLUSION: The concentration of nanofiller provides unique effects in PHBV. Mechanical performance was found to scale with composition as determined using dynamic mechanical analysis and tensile testing. Copyright © 2008 Society of Chemical Industry  相似文献   

17.
A two‐step procedure was used to synthesize the cellulose acetate butyrate and poly(ethylene glycol) graft copolymer (CAB‐g‐PEG). By choosing the appropriate composition, the crosslinked graft copolymer or not could be obtained. Then, the CAB‐g‐PEG copolymer was blended with poly(3‐hydroxybutyrate) (PHB), to further improve the mechanical properties of PHB. The results indicated that PHB and CAB‐g‐PEG that were not crosslinked were miscible over the entire composition range. As the CAB‐g‐PEG copolymer increased in the PHB/CAB‐g‐PEG blends, the melting temperature of the blends decreased, the crystallization of PHB became more difficult, and the crystallinity of the blend and PHB phase all decreased. The tensile properties and impact strength of the PHB/CAB‐g‐PEG blends were superior to the PHB/CAB blends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1471–1478, 2006  相似文献   

18.
The thermal degradation kinetics of poly(3‐hydroxybutyrate) (PHB) and poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) [poly(HB–HV)] under nitrogen was studied by thermogravimetry (TG). The results show that the thermal degradation temperatures (To, Tp, and Tf) increased with an increasing heating rate (B). Poly(HB–HV) was thermally more stable than PHB because its thermal degradation temperatures, To(0), Tp(0), and Tf(0)—determined by extrapolation to B = 0°C/min—increased by 13°C–15°C over those of PHB. The thermal degradation mechanism of PHB and poly(HB–HV) under nitrogen were investigated with TG–FTIR and Py–GC/MS. The results show that the degradation products of PHB are mainly propene, 2‐butenoic acid, propenyl‐2‐butenoate and butyric‐2‐butenoate; whereas, those of poly(HB–HV) are mainly propene, 2‐butenoic acid, 2‐pentenoic acid, propenyl‐2‐butenoate, propenyl‐2‐pentenoate, butyric‐2‐butenoate, pentanoic‐2‐pentenoate, and CO2. The degradation is probably initiated from the chain scission of the ester linkage. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1530–1536, 2003  相似文献   

19.
Poly(3‐hydroxybutyrate) (PHB) is a very promising biopolymer. In order to improve its processability and decrease its brittleness, PHB/elastomer blends can be prepared. In the work reported, the effect of the addition of a rubbery phase, i.e. ethylene–propylene–diene terpolymer (EPDM) or poly(vinyl butyral) (PVB), on the properties of PHB was studied. The effects of rubber type and of changing the PHB/elastomer blend processing method on the crystallinity and physical properties of the blends were also investigated. For blends based on PHB, the main role of EPDM is its nucleating effect evidenced by a decrease of crystallization temperature and an increase of crystallinity with increasing EPDM content regardless of the processing route. While EPDM has a weak effect on PHB glass transition temperature, PVB induces a marked decrease of this temperature thank to its plasticizer that swells the PHB amorphous phase. A promising solution to improve the mechanical properties of PHB seems to be the melt‐processing of PHB with both plasticizer and EPDM. In fact, the plasticizer is more efficient than the elastomer in decreasing the PHB glass transition temperature and, because of the nucleating effect of EPDM, the decrease of the PHB modulus due to the plasticizer can be counterbalanced. Copyright © 2010 Society of Chemical Industry  相似文献   

20.
The miscibility, thermal behaviour, morphology and mechanical properties of poly[(R)‐3‐hydroxybutyrate] (PHB) with poly(γ‐benzyl‐L ‐glutamate) (PBLG) are investigated by means of differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and tensile tests. The DSC results show that PHB and PBLG are immiscible in the melt state. Such immiscibility also exists in the amorphous state due to a clear two‐phase separated structure observed by SEM measurements. The blend samples with different thermal history, namely as original and melt samples separately, display differences in thermal behaviour such as the DSC scan profile, the crystallinity and the melting temperature of PHB. The crystallization of PHB both from the molten state and the amorphous state is retarded on addition of the second component. The SEM measurements reveal that a phase inversion occurs between the PHB/PBLG (60/40) and PHB/PBLG (40/60) blends. Except for the PHB/PBLG (40/60) blend, a microphase separated structure is observed for all blend compositions. The mechanical properties vary considerably with blend composition. Compared with pure components, the PHB/PBLG (20/80) blend shows a certain improvement in mechanical properties. © 2001 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号