首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
为了获得更好的锆-钛-钢复合板的综合性能,研究了热处理对锆-钛-钢复合板的影响。通过对锆-钛-钢界面的剪切强度试验分析,发现剪切强度随热处理温度的降低而减小。垂直于波纹方向的抗剪强度高于平行于波纹方向的抗剪强度。基于正交试验和方法分析,热处理因素对剪切强度和粘接强度的影响主次关系是:保温温度保温时间温度变化率。剪切试验的断口形貌为局部脆性断裂的韧性断裂。通过对力学性能、界面组织和显微硬度的分析,500℃, 2 h, 60℃/h;540℃, 1 h, 60℃/h的热处理均为合适的热处理工艺。随着保温温度的升高,晶粒变粗,界面富集元素富集区和扩散区,形成脆性金属间化合物Fe Ti。界面的显微硬度随热处理温度的升高而降低。  相似文献   

2.
为得到锆-钛-钢爆炸复合板最优热处理工艺,采用正交试验法研究保温温度、保温时间和热处理升降温速率3个因素对复合板粘结强度和残余应力的影响。结果表明,保温温度540℃、保温时间1 h、热处理升降温速率60℃/h为最优热处理工艺,复合板可以获得最佳粘结强度和残余应力状态组合,保温温度过高,时间太长都会降低粘结强度。此外,还对最优热处理工艺下复合板结合面进行了显微硬度测定,微观组织和断口形貌的观察。分析显示,复合板结合界面附近形成细晶区,显微硬度较大;结合面粘结试验断裂形式为韧性加解理混合型断裂。  相似文献   

3.
利用热压扩散焊接法法制备钛-钢复合材料。采用用扫描电镜、EDS分析、拉剪试验和三点弯曲试验等方法,研究了扩散焊接温度对钛-钢复合界面附近形貌、成分、界面剪切强度和弯曲性能的影响。结果表明:热压扩散焊接法在压力3 MPa,真空度≥10-3Pa,保温时间1 h,焊接温度≥820℃的条件下,有Ti、Fe原子相互扩散,可实现冶金结合;在焊接温度≥740℃条件下,钛钢界面的拉伸剪切强度都大于基体强度;在740~840℃的焊接温度下,抗弯曲性能随温度升高而先增大后减小,800℃的抗弯曲性能最强,达到29.71MPa。  相似文献   

4.
带夹层材料的爆炸-轧制钛钢复合板工艺研究   总被引:3,自引:0,他引:3  
为扩大钛-钢复合板的尺寸,采用一种新颖的组料方式,这种方法包括两个主要步骤,首先用爆炸焊接的方式将DT4夹层与钛板结合,然后按照对称方式组坯。研究轧制温度、退火温度对复合板剪切强度的影响。利用扫描电镜、光学显微镜和显微硬度试验机对复合板的微观组织和界面附近硬度进行分析。结果表明:复合板的结合强度取决于轧制温度和轧后退火温度,当轧制温度超过钛的α→β相变温度,并且退火温度超过750℃时,Ti/DT4界面脆性化合物明显增多,剪切强度显著降低;当退火温度超过900℃,Fe在钛中扩散速度快,显微硬度的峰值在钛侧出现;在550~650℃退火,复合板的结合强度略有升高。  相似文献   

5.
采用扫描电镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)和显微硬度计等研究了热处理对钛合金Ti6Al4V/纯铝AA1050复合板界面形貌特征、成分、力学性能以及显微硬度的影响,采用剪切试验对界面扩散层进行了力学性能研究.结果 表明:热处理温度会影响复合板界面扩散层的生成厚度,580℃时扩散层最厚,约为1.95 μm.3种不同热处理温度(540、560和580℃)条件下扩散层均有金属间化合物TiAl3生成,随热处理温度的升高,复合板界面显微硬度增加.当热处理温度为560℃时,复合板界面的最大剪切力和剪切强度达到峰值,分别为3877 N和73.2 MPa,剪切强度超过了纯铝基材(60 MPa).  相似文献   

6.
利用光学显微镜、扫描电子显微镜、X射线衍射仪、俄歇电子能谱分析仪和拉剪实验,研究了不同的热处理加热温度和保温时间对钛-钢爆炸复合板界面组织特征和性能的影响。热处理温度为750、850、950℃,保温时间为30、60、120 min。结果表明:热处理过程加速了组织转变和界面元素扩散。界面元素扩散主要形成的化合物为Ti C和Ti-Fe金属间化合物(Fe2Ti/Fe Ti)。随着温度的升高,界面扩散层厚度增加,复合板剪切强度下降。根据实验数据,提出了界面扩散层厚度和剪切强度与加热温度和保温时间的函数关系。  相似文献   

7.
利用光学显微镜、扫描电子显微镜、X射线衍射仪、透射电子显微镜、显微硬度计和拉剪实验,研究不同热处理温度对钛-钢爆炸轧制复合板界面组织特征和性能的影响。热处理温度为650、750、850、950°C,保温时间为60 min。结果表明:热处理过程加速界面元素扩散和组织的转变。随着温度的升高,复合板剪切强度下降。在850°C及以下温度热处理时,扩散反应层形成化合物TiC,剪切强度下降缓慢。当热处理温度超过850°C时,扩散反应层形成大量的Ti-Fe金属间化合物(Fe2Ti/FeTi)及少量的TiC,剪切强度明显下降。  相似文献   

8.
采用电阻炉对爆炸焊接钛-铝复合板进行退火处理,利用万能材料试验机、SEM、EDS和XRD研究了退火工艺对爆炸焊接钛铝复合板组织与性能的影响。结果表明,在400℃退火时,保温时间3~10 h对钛-铝复合板界面的剪切强度的影响不大;当退火温度≥450℃时,随着保温时间的延长,复合板的剪切强度开始逐渐上升,到达一峰值后,随着保温时间的继续延长,界面剪切强度开始下降。爆炸焊接钛-铝复合板在450℃、保温时间≥10 h和490℃、保温时间≥3 h退火处理时,界面结合区有中间化合物Al3Ti生成。爆炸焊接钛-铝复合板合适的退火工艺选为450℃保温3 h。  相似文献   

9.
钛-钢扩散复合界面组织与结合强度   总被引:1,自引:1,他引:1  
将钛管、钢管利用冷拔-内压扩散法制备了内包覆钛-钢复管.用扫描电镜、能谱分析、X-光衍射和拉剪试验等方法,研究了扩散退火温度与时间对钛-钢扩散复合界面附近组织、成分和界面剪切强度的影响.结果表明,该制备方法可使钛-钢实现冶金结合;界面剪切强度随扩散温度升高先增加后减小;750-800℃×0.5h扩散退火界面剪切强度最高,可达210MPa左右;扩散退火中Fe、Ti原子发生了互扩散;界面上有TiC形成;750℃×0.5 h扩散退火试样断口未检测到TiFe、TiFe2相;900-950℃×0.5h扩散退火钢侧出现柱状晶区,钛侧出现无晶界晶区与针状马氏体晶区.  相似文献   

10.
将钛管、钢管利用冷拔-内压扩散法制备了内包覆钛-钢复管。用扫描电镜、能谱分析、X-光衍射和拉剪试验等方法,研究了扩散退火温度与时间对钛-钢扩散复合界面附近组织、成分和界面剪切强度的影响。结果表明,该制备方法可使钛~钢实现冶金结合;界面剪切强度随扩散温度升高先增加后减小;750—800℃×0.5h扩散退火界面剪切强度最高,可达210MPa左右;扩散退火中Fe、Ti原子发生了互扩散;界面上有TiC形成;750℃×0.5h扩散退火试样断VI未检测到TiFe、TiFe2相;900—950℃×0.5h扩散退火钢侧出现柱状晶区,钛侧出现无晶界晶区与针状马氏体晶区。  相似文献   

11.
运用内聚力模型研究了锆-钛-钢复合板在粘结试验中的界面损伤过程,并利用扫描电子显微镜分析了界面断裂机理。运用正交试验研究了不同热处理工艺条件下的表面耐腐蚀性能,分析了保温温度、保温时间和升降温速率对粘结性能的影响。结果表明,I型裂纹加载下,界面损伤由内壁处开始,并逐渐发展至整个界面。界面整体属于脆性断裂,而波峰与波谷的过渡斜面则为混合断裂。腐蚀试验的塔菲尔极化曲线研究结果表明,锆覆层在HCl溶液中以点腐蚀为主,而在HAc溶液中以均匀腐蚀为主。爆炸焊接后,锆复合板的耐点腐蚀性能低于纯锆材料,并且保温温度越高,保温时间越长,耐腐蚀性能下降越明显。  相似文献   

12.
低活化铁素体/马氏体(reduced activation ferritic/martensitic,RAFM)钢及钒合金被认为是未来核聚变反应堆第一壁的候选结构材料,性能各有优劣,可满足近中期应用要求. 采用热等静压技术在温度800 ℃、等静压压强150 MPa和保温时间2 h下实现V4Cr4Ti合金和CLF-1钢的固态扩散连接,对其界面微观组织、元素扩散特征以及抗剪强度进行了分析. 结果表明,CLF-1钢在距离连接界面120 μm区域内出现脱碳层,而V4Cr4Ti合金侧存在宽度约1.5 μm的高硬脆碳化物层;V4Cr4Ti合金/CLF-1钢连接界面无缺陷,接头室温抗剪强度最高达238 MPa. 断口分析表明,断裂发生于靠近V4Cr4Ti合金侧的高硬脆碳化物层,断口表现出整体韧性,局部脆性断裂的特征.  相似文献   

13.
采用TiZrNiCu钎料来实现改良的超高温陶瓷(Cf-SiCf)/SiBCN与金属Nb的钎焊连接,研究了温度、时间对界面组织及力学性能的影响规律,对连接机理进行了分析. 结果表明,在900 ℃/20 min的工艺参数下,(Cf-SiCf)/SiBCN-Nb接头室温抗剪强度最高达到36 MPa,接头典型的界面结构为Nb/Ti-Nb固溶体/(Ti, Zr)2(Cu, Ni)/Zr5Si3 + Ti5Si3/TiC + ZrC/(Cf-SiCf)/SiBCN. Cu元素在钎焊过程中逐渐从钎料扩散陶瓷母材中,通过与SiC反应生成Cu-Si脆性化合物进一步促进(Cf-SiCf)/SiBCN陶瓷的分解,同时Cu-Si相是接头断裂路径由钎料层扩展到陶瓷侧的主要原因;保温时间过高时,陶瓷的分解程度增加,接头断裂在陶瓷内部;而温度过高时,固溶体前端与钎料层物相差异增大而引起了贯穿钎料层的裂纹.  相似文献   

14.
将TA1/5052爆炸焊接复合板在350、400及450 ℃分别保温1、3、6、9 h退火,对退火前后复合板组织和性能进行分析。结果表明:随退火温度升高,原子扩散加剧,界面形成的扩散层逐渐变厚;退火过程中铝易于向钛侧扩散,白色亮带和柯肯达尔孔洞主要位于靠近界面的5052铝合金侧;退火前界面处物相组成为α-Ti、α-Al、TiAl3,经350、400 ℃退火3 h及450 ℃退火1、3、6、9 h后,物相组成不变。经不同温度退火后,复合板界面抗拉强度低于退火前,而断面收缩率和伸长率明显高于退火前。拉伸断口分析表明,复合板TA1侧为以脆性断裂为主、韧性断裂为辅的韧脆混合断裂,5052侧为韧性断裂;复合板在350 ℃退火时界面剪切强度和剥离强度最大,较爆炸态分别增加8.24%和45.68%,随退火温度升高,界面剪切强度和剥离强度降低。退火前后界面结合区硬度均高于基复板两侧硬度,且随离界面距离增加,硬度逐渐降低直至降至钛铝两侧母材硬度。退火后界面结合区硬度明显低于爆炸态硬度。  相似文献   

15.
文中提出以薄的铝合金板作为过渡层,采用爆炸焊接技术成功制备钛/铝/镁层状复合材料. 对钛/铝接合界面、铝/镁接合界面及钛/铝/镁爆炸复合板的整体力学性能进行了分析研究. OM和SEM试验结果表明,钛/铝接合界面和铝/镁接合界面均为波状接合界面,在铝/镁界面出现了局部熔化区;钛/铝接合界面为小尺寸波(λ=160 μm,h=26 μm),铝/镁接合界面为大尺寸波(λ=1 740 μm,h=406 μm);拉-剪试验表明,复合板沿着铝/镁接合界面断裂;弯曲性能测试表明,钛板一侧受拉时复合板弯曲强度和塑性均优于镁合金板一侧受拉,断裂始于铝/镁接合界面,最终从镁合金板一侧剪切断裂失效.  相似文献   

16.
研究了热处理温度和保温时间对低温钎焊Al/Sn-Bi/Cu接头强度的影响,采用光学显微镜和扫描电镜对接头界面显微组织和断口表面形貌进行了分析。结果表明,随着热处理温度的增加,焊接件的剪切强度表现出增加的趋势。随着热处理时间的增加,Al/Sn-Bi/Cu接头的剪切强度呈现出先增大后减小的趋势。钎焊时铜铝元素进入到钎焊层当中,主要以Cu-Al固溶体的形式存在,并随着热处理时间延长而聚集。热处理使钎缝内粗大的脆性Sn-Bi共晶组织变得细小且覆盖面积减小,从而增加接头强度,Cu-Al固溶体聚集和生长会降低接头强度。  相似文献   

17.
蔡宁  张永强  王鹏博  王海全  鞠建斌  付参 《焊接》2021,(1):28-34,63
以DC01钢板与5082铝合金板为基材,在电极压力3 kN、焊接时间300 ms、保持时间100 ms条件下,研究了电阻点焊中焊接电流(9~12 kA)及Ni镀层对接头剪切力、正拉力、界面相组成的影响。结果表明,随焊接电流的提高,熔核尺寸增大,接头力学性能提高。剪切力比正拉力高一个数量级。在10 kA焊接电流下,镀Ni钢/铝接头的剪切力和正拉力均比钢/铝直接焊接时强度明显提高,这与钢/铝界面形成了Al 3Ni合金相,抑制了脆性Fe 2Al 5金属间化合物的生成有关。  相似文献   

18.
测定了经过900℃不同时间热处理的SiC/Ti-6Al-4V复合材料的拉伸强度,并采用全局载荷分配模型计算了复合材料的强度。发现长时间热处理后,复合材料强度的计算值与实测值吻合很好,但该模型对未经热处理的制备态试样的预测值偏高。扫描电镜和透射电镜微观分析表明,随着热处理时间的延长,SiC/Ti-6Al-4V复合材料的界面反应区增厚而SiC纤维的C涂层逐渐消耗,复合材料的界面结合强度逐渐增加但抗拉伸强度逐渐下降。界面反应形成的反应产物主要为TiC,在C涂层消耗完的区域还形成了Ti5Si3。界面反应是使复合材料力学性能变差的主要原因。  相似文献   

19.
采用Al-Si-Mg钎料成功实现了5005铝合金与1Cr18Ni9Ti不锈钢的真空钎焊,借助扫描电镜、能谱分析仪和X射线衍射仪对焊后接头界面组织进行分析,同时对接头抗剪强度进行测试.结果表明,焊后接头界面结构从1Cr18Ni9Ti不锈钢侧到5005铝合金侧的界面组织依次为FeAl,FeAl3,FemAln+αAl.随着钎焊温度的升高或保温时间的延长,接头抗剪强度均呈现先升高后降低的变化趋势.当钎焊温度为580℃,保温时间为15 min时,接头抗剪强度达到最大值49 MPa.接头断裂形式受钎焊温度的影响,当钎焊温度较低时,接头断裂于铝合金侧氧化膜层及FemAln+αAl反应层;温度升高至580℃时,接头断裂于FemAln+αAl反应层中,接头抗剪强度最高.  相似文献   

20.
研究了热加工工艺对钛-钢复合板界面力学性能和显微组织的影响。测试了在A,B,C,D4种温度下热轧复合板界面的力学性能,用金相显微镜及扫描电镜观察了界面显微组织并分析了界面的成分。结果表明,在A,B2种温度下轧制的钛-钢复合板界面机械性能良好,延伸率高,其剪切强度不但可保持坯料原有的水平,甚至还略有增加。在C,D2种温度下轧制的钛-钢复合板界面机械性能相对较低,延伸率较高,但剪切强度要比爆炸复合坯料低,尤其是D加热温度,轧制后界面剪切强度急剧下降。热轧的终轧温度也是影响钛-钢复合板界面结合性能的重要因素。在低于相转变温度的合适温区热轧,且终轧温度合适,获得的钛-钢复合板结合界面无爆炸波纹,没有污染,生产的脆性化合物极细小,组织类同于钛材完全退火的等轴组织。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号