首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
One important parameter for the processing of materials by semi‐solid forming is the actual distribution of the solid and liquid phases in the semi‐solid range. This parameter defines the process stability for the forming step. Therefore it is necessary to obtain information about the materials behaviour in the semi‐solid state for different materials grades. This kind of information can be obtained by experimental studies in the interesting temperature range or by calculations with simulation programs using thermodynamic data validated by experiments. This work shows the results of experimental studies and thermodynamic calculations of the solidification and heat treatment behaviour of the aluminium alloy A319 and the steel X210CrW12. The experimental studies of solidification and heat treatment of these alloys were carried out using a differential thermal analysis system (DTA). The theoretical fraction of liquid content was calculated from the DTA signal by using a software module called Corrdsc. The experimental data obtained were used to validate the thermodynamic simulations of the solidification of semi‐solid alloys. The simulations of the solidification process were carried out for equilibrium conditions, with the Scheil‐Gulliver model as well as with diffusion calculations. The equilibrium and Scheil‐Gulliver calculations were performed by the program Thermo‐Calc, and the diffusion by the program DICTRA. The required thermodynamic and mobility data for multicomponent systems were taken from the data bases COST 507 light alloys, TCFE2000 Steel/Alloys and MOB2 mobility and from newly added data. The comparison of calculated phase transformations and fractions of liquid content with experimental data revealed a good agreement.  相似文献   

2.
Bainite formation from intercritical austenite is of great practical importance for the production of TRIP‐assisted steels. Silicon and aluminium play important roles during this transformation by delaying carbide precipitation, thus favouring the carbon enrichment of untransformed austenite, which makes its stabilisation down to room temperature possible. Previous studies have shown a strong dependence of bainite formation kinetics on both chemical composition and transformation temperature. In the present work, the effect of silicon and aluminium contents on bainite formation kinetics is investigated experimentally using dilatometry combined with microscopical observations. The experimental results are analysed by comparison with thermodynamic parameters, such as the activation energy G1 for nucleation of bainite and the carbon content Cto corresponding to the To‐curve. It is shown that the faster transformation kinetics induced by the substitution of silicon by aluminium can be ascribed (i) to a higher driving force for nucleation, (ii) to a higher carbon content Cto at the To‐curve and (iii) to the precipitation of carbide in austenite in steels with a low Al content.  相似文献   

3.
Semi‐solid metal casting is an innovative technology for the production of near‐net‐shape parts with demanding mechanical properties. The paper describes different processing routes and materials for semi‐solid‐metal casting (SSM), which have been investigated and also partially developed at the Foundry‐Institute of Aachen University. The standard thixocasting process for aluminium, highly reactive magnesium alloys and steel alloys with high melting points was investigated under variation of a wide range of process parameters. Specially adapted pre‐material production and reheating methods were developed for different materials and their application and future potential is pointed out. The thixocasting experiments were executed on a modified high pressure die‐casting machine with a specially designed “step‐die” providing wall thicknesses from 0.5 to 25 mm. The mechanical properties were tested in dependence of the wall thickness and the metal velocity. The results of these examination show high tensile strength values in combination with very good elongations. The rheocasting process is a new SSM‐forming method with liquid melt as feed‐stock and a high recycling potential. The research results of RCP‐technology (Rheo‐Container‐Process) invented at the Foundry‐Institute and of the Cooling‐Channel‐Process for aluminium and magnesium alloys are promising and are presented in this paper. Studies on semi‐solid processing of magnesium alloys and mixtures of them were conducted by ThixomoldingTM. To establish the most adequate process parameters, the temperature and the mixture relations were varied. Using a mould for tensile test specimens, the mechanical properties and the microstructure evolution could be evaluated. The chemical composition of the different phases was determined using SEM and EDX technologies. Evaluations of the flowing properties were conducted using a spiral mould with a total length of 2m and a cross section of 20mm x 1.5mm.  相似文献   

4.
In order to broaden the field of application for the innovative thixocasting process, much research is dedicated to the thixocasting of high melting point alloys. The wide property range of modern high alloy steels combined with the productive semi‐solid die casting process opens up new fields of application. The Foundry Institute of the Aachen University has therefore been concentrating on the research of the possibilities and limits of high pressure die casting of high alloy steels in the semi‐solid state. This paper gives an overview of the current work dedicated to thixocasting of steel alloys by a high pressure die casting machine at the Foundry‐Institute of the Aachen University of Technology. In order to understand and describe the material properties in the semi‐solid state, basic test specimens have been investigated. Weak points of tool preheating as well as directional solidification of the produced parts can be controlled by numerical simulation of the temperature distribution inside the dies. In consideration of the outstanding flow properties of semi‐solid steels more complex geometries with accurately defined applications are now being investigated. Extensive metallographical analyses of the pre‐material, the reheated billets and the produced parts have been done to evaluate the viability of the process. The mechanical properties of the specimens outline the outstanding potential of the thixocasting process.  相似文献   

5.
High‐strength TRIPLEX light‐weight steels of the generic composition Fe‐xMn‐yAl‐zC contain 18 ‐ 28 % manganese, 9 ‐ 12 % aluminium, and 0.7 ‐ 1.2 % C (in mass %). The microstructure is composed of an austenitic γ‐Fe(Mn, Al, C) solid solution matrix possessing a fine dispersion of nano size κ‐carbides (Fe,Mn)3 AlC1‐x and α‐Fe(Al, Mn) ferrite of varying volume fractions. The calculated Gibbs free energy of the phase transformation γfcc → ?hcp amounts to ΔGγ→? = 1757 J/mol and the stacking fault energy was determined to ΓSF = 110 mJ/m2. This indicates that the austenite is very stable and no strain induced ?‐martensite will be formed. Mechanical twinning is almost inhibited during plastic deformation. The TRIPLEX steels exhibit low density of 6.5 to 7 g/cm3 and superior mechanical properties, such as high strength of 700 to 1100 MPa and total elongations up to 60 % and more. The specific energy absorption achieved at high strain rates of 103 s?1 is about 0.43 J/mm3. TEM investigations revealed clearly that homogeneous shear band formation accompanied by dislocation glide occurred in deformed tensile samples. The dominant deformation mechanism of these steels is shear band induced plasticity ‐SIP effect‐ sustained by the uniform arrangement of nano size κ‐carbides coherent to the austenitic matrix. The high flow stresses and tensile strengths are caused by effective solid solution hardening and superimposed dispersion strengthening.  相似文献   

6.
Literature data for the limiting thermodynamic properties of nitrogen in liquid Fe, Co, Ni, and Cr, as well as in the six binary alloys consisting of two of the above elements, are critically evaluated. The ternary data are evaluated in terms of the Wagner model for quasi-interstitial liquid alloys and values of the Wagner parameter h are obtained for each system. The correlation formulated by Chiang and Chang between the Wagner parameter h and the relevant binary thermodynamic properties for oxygen in binary alloys has been found to be equally valid for nitrogen in binary alloys. From this correlation, a value of h may be predicted in the absence of any ternary experimantal data. Utilizing the Wagner model and the value of h obtained for each system, values for the first-order and second-order Gibbs energy interaction parameters ∈N(s) and ρsujN(s) are derived.. The parameters are expressed as a linear function of the reciprocal temperature, i.e. ∈jN(s) =α + β/T and.ρjN(s) = α′ + β′/T. A linear correlation found by Chipman and Corrigan between β and ∈jN(s) for systems where Fe is the solvent is also valid for systems with non-ferrous solvents. A linear correlation between β′ and ρjN(s) is also found in the present study.  相似文献   

7.
Semi‐solid metallurgy (SSM), also known as “thixoforming” or “thixoprocessing”, is of special interest as a new potential manufacturing technology for components in the automobile, machine and electronic industries. The aim of this technology is to produce complex shapes which cannot be produced with conventional processing methods. An important process step of semi‐solid processing (SSP) is the reheating and isothermal holding of the billet within the solid‐liquid range in order to obtain the required fraction liquid content and the desired globular microstructure. Aside from the investigation of billet heating and the development of a suitable tool design, the development and evaluation of adequate microstructures over a wide temperature area is very important. The focus of this paper is to determine the semi‐solid area of different steels through Differential Thermal Analysis (DTA) measurements. To determine a process window for handling the alloys in the semi‐solid state, the DTA‐results can be combined with microstructure parameters. Subsequent quenching experiments show the development of the microstructure parameters (e.g. grain size, phase distribution, volume fraction, shape factor, matrix character, contiguity, and particle density of the primary solid and liquid phases). A comparison of the slopes of the determined solid‐liquid areas for different steels show the width of the melting or freezing intervals to evaluate the possible process windows. DTA‐experiments performed at different heating rates show the influence of faster heating and cooling rates on the solidus‐liquidus interval. To evaluate the suitability for the thixoforming processes, this paper describes, and then compares, the semi‐solid intervals of different steel grades, which have been investigated in the Department of Ferrous Metallurgy at the RWTH Aachen University. The tool steel HS 6‐5‐3 and the cold work tool steel X210CrW12 have a wide semi‐solid area, which can be explained due to the dissolution of different carbides. In contrast to this, the steels C45, 42CrMo4, 16MnCr5, 34CrNiMo4, 100Cr6, X220CrVMo13‐4 and the Alloy 33 show a much smaller semi‐solid area.  相似文献   

8.
Forging is state‐of‐the‐art for producing hand tools on an industrial scale. Due to high demands on the stiffness and the fracture toughness, high‐strength forging steels are used to provide cavity‐free components with high mechanical load capacity. Moreover, forging is a cost‐effective mass production process but, in spite of all its advantages, it has its limitations, e.g. in the freedom of designs. However, because of the extreme thermal loading (particularly with regard to permanent moulds) and the frequently unavoidable casting defects, hand tools are not cast. By means of thixocasting steel, technical difficulties can be reduced and new options are provided which allow the manufacturing of components with much higher complexity than that using forging. Through near‐net shape production, manufacturing steps and costs can be reduced. Furthermore, steels, which are difficult to forge but nonetheless have high potential for specific applications (such as high strength or corrosion resistant steels), can also be processed. In cooperation with industrial partners, X39CrMo17 stainless steel size 17 combination spanners were thixocast. Forming dies were designed and optimized by simulation, the hot forming X38CrMoV5 tool steel as well as the molybdenum alloy TZM were selected as the tool alloys. The dies were treated by a plasma nitriding process and subsequently coated with crystalline Al2O3 protective coatings by plasma‐enhanced chemical vapor deposition (PECVD). During the experiments, combination spanners were successfully cast in the semi‐solid state. Cast parts were heat‐treated to enhance the components' toughness, which was subsequently measured by Charpy impact and tensile tests.  相似文献   

9.
半固态铝合金设计与试验研究   总被引:18,自引:1,他引:18  
在半固态加工的基本原理基础上采用合金热力学计算方法设计了Al-Si-Mg系半固态新合金,并进行了初步的试验验证。结果表明,新合金在铸态和半固态下的组织和力学性能特点与预测结果基本一致,并且发现适当增加Mg,si含量可以改善铝合金半固态加工性能和提高合金的力学性能。这对进一步开发新型的实用半固态合金具有一定的指导作用。  相似文献   

10.
11.
Titanium nitride in microalloyed steels can be formed already in delta iron, as can be shown by thermodynamical calculations basing on measurements of the solubility in austenite or in the melt. The solubility products calculated with respect to delta iron differ up to one order of magnitude. Therefore, between 1420 and 1510°C a direct measurement was performed on pure Fe–Ti–N alloys yielding a solubility product (related to the composition TiN1,0) of log LTiNα/δ = ?17205/T + 5.56. It is identical with that one calculated from the solubility in liquid iron. The differing results of calculations basing on the solubility in austenite are attributed to incorrect data of the Gibbs free solution energy of titanium in austenite. Starting from the present measurements and from the data reported with respect to pure titanium and to the nitrogen solubility a Gibbs free solution energy GTi,γH(x) – GTi,γR = ?40294 ? 13.66. T[J/mole] was deduced which is more negative than previous data.  相似文献   

12.
To produce steel components with complex shapes excessive machining is necessary frequently since high pressure die casting of steel is not industrially applied. Forming steel in the semi‐solid state can in principle produce new components and geometries which cannot be realised by conventional closed die forging. Semi‐solid forging of steel combines the possibility of producing geometries not conventionally forgeable in one forming operation and of adding further functions during the same operation. In previous investigations on thixoforming of steels, the semi‐solid steel was generated by reheating precursor material billets. An alternative approach for generating semi‐solid steel from the liquid state with subsequent forging operation is presented in this paper for the first time. The steel grades X210CrW12 cold work tool steel and 100Cr6 bearing steel are molten and driven into a globular semi‐solid state using a cooling slope and a cup. By cooling the steel into the semi‐solid range instead of heating it, the required process temperatures are lower than in the process route via heating. Therefore, the load on the dies in a semi‐solid forging operation is decreased. Suggestions for the respective layout of the process are made for both steel grades. Future potentials and challenges to be solved are discussed, showing advantages especially in the field of high melting point alloys such as steels. This technique enables to produce pre‐shaped semi‐solid billets to optimise the materials flow and the homogeneity of the mechanical properties.  相似文献   

13.
The effect of overheating ΔT L + of the gallium melt on its supercooling ΔT L ? during solidification is studied by cyclic thermographic analysis. The obtained data on ΔT L ? are used to calculate the thermodynamic and kinetic characteristics of gallium solidification.  相似文献   

14.
An experimental characterization of three-phase equilibria in Fe—V—O and Fe—Nb—O systems at 1 823, 1 873, and 1 923 K has been carried out using a solid state cell and by analysis of quenched samples. The oxygen potentials corresponding to these three-phase equilibria were monitored by a solid state cell incorporating Y2O3 doped ThO2 with Cr + Cr2O3 as reference electrode. Similar measurements were carried out for Fe—Nb—O alloys in equilibrium with a mixture of FeNb2O6 and NbO2. These measurements permit evaluation of interaction parameters (evo= -6590/T+2.892 and eNbo = -4066/T+1.502) and activity coefficients of vanadium and niobium in dilute solution (In yov = -35320/T+12.68 and In yoNb = - 12386/T+ 4.34) in liquid iron. The results obtained in this study resolve a number of discrepancies in thermodynamic data reported in the literature, especially regarding the activity coefficients of V and Nb and the stability ranges for V2O3 and VO1+x.  相似文献   

15.
The Master Curve (MC) approach and the associated reference temperature, T0, as defined in the test standard ASTM E1921, is rapidly moving from the research laboratory to application in integrity assessment of components and structures. T0 is the index temperature for the universal MC, which considers the toughness behaviour of a specific material. “The Structural Integrity Assessment Procedures for European Industry” (SINTAP) contain a MC extension for analysing the fracture behaviour of inhomogeneous ferritic steels. This paper presents the application of the MC approach to the T0 determination of different types of Russian WWER‐type reactor pressure vessel (RPV) steels. In addition the SINTAP‐MC approach was applied to determine an alternative reference temperature, TR. The influence of different microstructures and compositions within one type of RPV steel and the effect of irradiation with fast neutrons on T0 are experimentally evaluated. In general the MC based T0 is about 72 K below the Charpy V‐notch transition temperature related to an impact energy of 48 J. The paper demonstrates the application of MC based T0 and TR as an alternative reference temperature for neutron embrittled RPV steels used in the RPV integrity assessment.  相似文献   

16.
A Knudsen cell-mass spectrometer combination was used to determine the activities of iron and nickel in solid and liquid iron-nickel alloys in the temperature range 1500 to 1900 K. This has provided thermodynamic data which are consistent in both the solid and liquid regions. The δHM@#@ values obtained are in fair agreement with calorimetric data. A subregular model gives a good representation of the thermodynamic properties of this system.  相似文献   

17.
Gas carburizing of high-alloyed stainless steels increases surface hardness, as well as the overall mechanical characteristics of the surface. The growth of chromium-rich carbides during carbon transfer into the steel causes precipitation hardening in the surface, but decreases the chromium content in solid solution. In order to maintain a good corrosion resistance in the carburized layer, the stainless steel composition and the carburizing process need to be optimized. To limit the experimental work, a methodology using software for modeling the thermodynamic and kinetic properties in order to simulate carbon diffusion and phase transformations during gas carburizing is presented. Thermodynamic calculations are initially used to find the optimum parameters (T, carbon wt pct, etc.) in order to maintain the highest Cr and Mo contents in the austenitic solid solution. In a second step, kinetic calculations using the diffusion-controlled transformations (DICTRA) software are used to predict how the amount of the different phases varies and how the carbon profile in the steel changes as a function of time during the process. Experimental carbon profiles were determined using a wavelength-dispersive spectrometer for electron-probe microanalysis (WDS-EPMA), while carbide compositions were measured by energy-dispersive spectroscopy_X (EDS_X) analyses. A good agreement between calculated and experimental values was observed for the Fe-13Cr-5Co-3Ni-2Mo-0.07C and the Fe-12Cr-2Ni-2Mo-0.12C (wt pct) martensitic stainless steels at 955 °C and 980 °C.  相似文献   

18.
In this work, the development of corrosion-resistant twinning induced plasticity steels is presented, supported by thermodynamic and diffusion calculations within the (Fe-Mn-Cr)-(C-N) alloy system. For the calculations, ambient pressure and primary austenitic solidification were considered as necessary to avoid nitrogen degassing in all processing steps. Manganese is used as an austenite stabilizer, chromium is used to increase nitrogen solubility and provide corrosion resistance, and carbon and nitrogen are used as interstitial elements to provide mechanical strength. Isopleths of the different elements vs temperature as well as isothermal sections were calculated to determine the proper amount of Mn, Cr, total interstitial content, and the C/N ratio. Scheil and diffusion calculations were used to predict the extent of microsegregations and additionally to evaluate the effect of diffusion annealing treatments. The materials were produced in laboratory scale, being followed by thermomechanical processing and the characterization of the microstructure. Tensile tests were performed with three different alloys, exhibiting yield strengths of 460 Mpa to 480 MPa and elongations to fracture between 85 pct and 100 pct.  相似文献   

19.
The partial excess Gibbs energy Δ?BEx as well as the relationship between the partial enthalpy of mixing ΔH?B and the partial excess entropy of solution ΔS?BEx of various solute elements in liquid Fe, Al and Pb binary alloys were evaluated from a new solution model, in which ΔS?BEx can be calculated from the values of ΔH?B by Miedema's semi-empirical method and some relevant physical properties of the components in the alloys. These calculated values of Δ?BEx were found to be in reasonable agreement with the selected values presented so far. The present model gives the values of Δ?BEx, for which the experimental data are not yet available.  相似文献   

20.
High-melting-point inclusions such as spinel(Al2O3·xMgO) are known to promote clogging of the submerged entry nozzle (SEN) in a continuous caster mold. In particular, Ti-alloyed steels can have severe nozzle clogging problems, which are detrimental to the slab surface quality. In this work, the thermodynamic role of Ti in steels and the effect of Ca and Ti addition to the molten austenitic stainless steel deoxidized with Al on the formation of Al2O3·xMgO spinel inclusions were investigated. The sequence of Ca and Ti additions after Al deoxidation was also investigated. The inclusion chemistry and morphology according to the order of Ca and Ti are discussed from the standpoint of spinel formation. The thermodynamic interaction parameter of Mg with respect to the Ti alloying element was determined. The element of Ti in steels could contribute to enhancing the spinel formation, because Ti accelerates Mg dissolution from the MgO containing refractory walls or slags because of its high thermodynamic affinity for Mg ( e\textMg\textTi = - 0. 9 3 3). ( {e_{\text{Mg}}^{\text{Ti}} = - 0. 9 3 3}). Even though Ti also induces Ca dissolution from the CaO-containing refractory walls or slags because of its thermodynamic affinity for Ca ( e\textCa\textTi = - 0.119 ), \left( {e_{\text{Ca}}^{\text{Ti}} = - 0.119} \right), dissolved Ca plays a role in favoring the formation of calcium aluminate inclusions, which are more stable thermodynamically in an Al-deoxidized steel. The inclusion content of steel samples was analyzed to improve the understanding of fundamentals of Al2O3·xMgO spinel inclusion formation. The optimum processing conditions for Ca treatment and Ti addition in austenitic stainless steel melts to achieve the minimized spinel formation and the maximized Ti-alloying yield is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号