共查询到17条相似文献,搜索用时 62 毫秒
1.
多元时间序列特征降维方法研究 总被引:2,自引:0,他引:2
针对常见的降维方法难以有效地保留多元时间序列主要特征的问题,分析了传统PCA方法在多元时间序列降维中的局限性;提出一种基于共同主成分分析的线性降维方法;把共同主成分与核技巧相结合,通过数学推导,将其拓展为基于共同核主成分分析的非线性降维方法;最后分析两种方法的降维有效性.与传统PCA方法相比,基于共同核主成分分析的降维方法可以表达变量间的非线性关系、能够选取合适的核函数和形状参数,因此降维手段更为灵活、对数据的适应性更强.实验结果表明,本文提出的降维方法能够更有效地对多元时间序列进行降维. 相似文献
2.
基于形态特征的时间序列符号聚合近似方法 总被引:3,自引:0,他引:3
由于形态特征能够较为客观地反映时间序列的变化趋势,在时间序列数据降维过程中,形态特征的提取能够保留较为充分的数据信息,为提高后期的时序数据挖掘的效率提供可靠的保障。文中提出基于形态特征的时间序列符号聚合近似方法,综合考虑分段序列的均值和数据分布的形态特征,并且通过论域转化对它们实现符号转化。在相同的压缩比环境下,与传统符号化表示方法相比,该方法能更好地提供原始时间序列数据信息,进而提高时间序列数据挖掘的效率。 相似文献
3.
4.
多元时间序列具有高噪声、非线性和海量的特点,但传统基于距离的降维方法难以有效的应对噪声带来的子空间偏移和数据的爆炸式增长。在基于角度优化的全局嵌入算法和共同核主成分分析方法的基础上,提出了一种基于角度优化的共同核主成分分析方法,并将该方法依托Hadoop平台进行了并行化改进,有效解决了噪音带来的子空间偏移和海量数据带来的巨大运算量问题。通过实验,对算法的有效性、运行效率及伸缩性进行了验证,结果表明提出的方法可以有效地对含有噪声的多元时间序列进行降维;基于Hadoop平台并行后的方法具有良好的运行效率和伸缩性。 相似文献
5.
数据降维和特征表示是解决时间序列维灾问题的关键技术和重要方法, 它们在时间序列数据挖掘中起基础性作用. 鉴于此, 提出一种新的时间序列数据降维和特征表示方法, 利用正交多项式回归模型对时间序列实现特征提取, 结合特征序列长度对时间序列的拟合分析结果, 运用奇异值分解方法对特征序列进一步降维处理, 进而得到保存大部分信息且维数更低的特征序列. 数值实验结果表明, 新方法可以在维度较低的特征空间下取得较好的数据挖掘聚类和分类效果.
相似文献6.
7.
基于DTW的多元时间序列模式匹配方法 总被引:1,自引:0,他引:1
现有的模式匹配方法难以高效、准确地度量多元时间序列的相似性.本文对多元时间序列进行多维分段拟合,选取各个变量维度上拟合线段的倾斜角和时间跨度作为特征模式,进而提出一种基于DTW的多元时间序列模式匹配方法,并通过实验验证所提方法的有效性.实验结果表明,该模式匹配方法对时间跨度较大且体现一个连续、完整过程的多元时间序列具有较好的匹配效果;对时间跨度较小、体现状态点的多元时间序列也具有一定的匹配能力. 相似文献
8.
9.
由于不确定时间序列的长度很长,并且每个采样点的取值具有不确定性,导致了维度灾难和庞大的可能世界集,给不确定时间序列相似性匹配带来了巨大的困难,因此对不确定时间序列降维是实现对其方便存储、快速查询和相似性匹配的首要任务。不确定时间序列普遍采用小波变换的降维方法,但是该方法没有考虑到采样点之间的相关性。为解决该问题,提出一种基于概率统计和数据相关性的降维方法,该方法将不确定时间序列分为概率维度和时间维度,并分别对两维度进行降维。在时间维度,根据采样点之间的相关性,使用某个采样点代表后续相关度高的采样点;在概率维度,使用大概率点表示相邻的小概率点。实验效果表明:使用该方法对不确定时间序列进行降维后,降维序列可以保持原序列的变化趋势,压缩程度显著,并且可近似地恢复原序列。 相似文献
10.
动态时间弯曲距离能度量不等长的时间序列、且具有较高的匹配精度,因此广泛应用在时间序列模式匹配中。但其计算复杂度较高,制约了在大规模数据集上的应用。为了实现时间序列模式度量结果和计算复杂度的平衡,提出一种基于特征点界标过滤的时间序列模式匹配方法。首先,提出一种特征点界标过滤的特征提取方法,保留时间序列主要特征,压缩时间维度;然后,利用动态时间弯曲距离对特征序列进行相似性度量;最后,在应用数据集上对所提方法进行有效性验证。实验结果表明,所提方法在保证高精度的前提下,能有效降低计算复杂度。 相似文献
11.
In recent years, dynamic time warping (DTW) has begun to become the most widely used technique for comparison of time series data where extensive a priori knowledge is not available. However, it is often expected a multivariate comparison method to consider the correlation between the variables as this correlation carries the real information in many cases. Thus, principal component analysis (PCA) based similarity measures, such as PCA similarity factor (SPCA), are used in many industrial applications.In this paper, we present a novel algorithm called correlation based dynamic time warping (CBDTW) which combines DTW and PCA based similarity measures. To preserve correlation, multivariate time series are segmented and the local dissimilarity function of DTW originated from SPCA. The segments are obtained by bottom-up segmentation using special, PCA related costs. Our novel technique qualified on two databases, the database of signature verification competition 2004 and the commonly used AUSLAN dataset. We show that CBDTW outperforms the standard SPCA and the most commonly used, Euclidean distance based multivariate DTW in case of datasets with complex correlation structure. 相似文献
12.
基于条件互信息的多维时间序列图模型 总被引:1,自引:2,他引:1
在多维时间序列的图模型中引入信息论方法, 提出了多维时间序列中各分量之间直接线性联系存在性的互信息检验.定义了线性条件互信息图, 图中的结点表示多维时间序列的分量, 结点间的边表示各分量之间存在的直接线性相依关系.提出了分量之间条件线性联系存在性的信息论检验方法.图中边的存在性用基于线性条件互信息的统计量检验, 统计量的显著性用置换检验决定.应用到实例中的结果表明本文的方法能迅速准确的捕捉各分量之间的直接线性联系. 相似文献
13.
现有的各种多元时间序列相似性搜索方法难以准确高效地完成搜索任务。提出了一种基于特征点分段的多元时间序列相似性搜索算法,提取所定义的用于分段的特征点,分段后将原时间序列转化为模式序列,该模式序列能够很好地保留原序列的全局形状特征,再用分层匹配的方法进行相似性搜索。实验结果表明,该方法能够有效刻画序列的全局形状特征,通过分层匹配保留局部的相似性,同时提高搜索准确率。 相似文献
14.
为提高多元时间序列相似性度量的效率,采用扩展Frobenius范数(Eros)的主元分析(PCA)方法,通过主元和本征值构造主元相似因子,用于比较多元时间序列矩阵之间的相似性。为了验证这种方法的有效性,针对三组数据(两个真实数据,一个合成数据)进行了实验。结果表明,该方法相对于以往的欧几里德距离(ED),动态时间弯曲(DTW)相似性度量方法具有一定的优越性。 相似文献
15.
16.
现有多元时间序列分段算法中分段点的选择以及分段个数的确定往往需要分别独立完成,大大增加了算法的计算复杂度.为解决上述问题,提出一种基于多元时间序列的自适应贪婪高斯分段算法.该算法将多元时间序列各个分段所对应的数据解释为来自不同多元高斯分布的独立样本,进而将分段问题转化为协方差正则化的最大似然估计问题进行求解.为提高学习效率,采用贪婪搜寻方法使每个段的似然值最大化进而近似地找到最优分段点,并且在搜寻的过程中利用信息增益方法自适应地获取最优的分段个数,避免分段个数确定和分段点选择分别独立进行,从而减少计算的复杂度.基于多种领域的真实数据集实验结果表明,所提出方法的分段精度以及运行效率均优于传统方法,并且能够有效完成多元时间序列的异常检测任务. 相似文献
17.
针对传统符号聚合近似方法在特征表示时容易忽略时间序列局部形态特征的局限性,以及动态时间弯曲在度量上的优势,提出一种基于数值符号和形态特征的时间序列相似性度量方法.将时间序列进行符号和形态的特征表示后,提出动态时间弯曲与符号距离结合的时间序列距离度量方法,使所提方法能够较好地反映时间序列数据数值分布和形态特征.实验结果表明,所提出的方法在时间序列数据挖掘中能够得到较好的分类效果,具有一定的优越性. 相似文献