首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 15 毫秒
1.
As global climate change affects recharge and runoff processes, stream flow regimes are being altered. In the American Southwest, increasing aridity is predicted to cause declines in stream base flows and water tables. Another potential outcome of climate change is increased flood intensity. Changes in these stream flow conditions may independently affect vegetation or may have synergistic effects. Our goal was to extrapolate vegetation response to climate‐linked stream flow changes, by taking advantage of the spatial variation in flow conditions over a 200 km length of the San Pedro River (Arizona). Riparian vegetation traits were contrasted between sites differing in low‐flow hydrology (degree of stream intermittency) and flood intensity (stream power of the 10‐year recurrence flood). Field data indicate that increased stream intermittency would cause the floodplain plant community to shift from hydric pioneer trees and shrubs (Populus, Salix, Baccharis) towards mesic species (Tamarix). This shift in functional type would produce changes in vegetation structure, with reduced canopy cover and shorter canopies at drier sites. Among herbaceous species, annuals would increase while perennials would decrease. If flood intensities increased, there would be shifts towards younger tree age, expansion of xeric pioneer shrubs (in response to flood‐linked edaphic changes), and replacement of herbaceous perennials by annuals. Woody stem density would increase and basal area would decrease, reflecting shifts towards younger forests. Some effects would be compounded: Annuals were most prevalent, and tree canopies shortest, at sites that were dry and intensely flooded. Vegetational changes would feedback onto hydrologic and geomorphic processes, of importance for modeling. Increased flood intensity would have positive feedback on disturbance processes, by shifting plant communities towards species with less ability to stabilize sediments. Feedbacks between riparian vegetation and stream low‐flow changes would be homeostatic, with reduced evapotranspiration rates ameliorating declines in base flows arising from increased aridity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
The restoration of ecological continuity along the Sélune River (Normandy, France) involves the removal of two tall hydroelectric dams (36 m removed in 2019 and 16 m in 2021), a project without precedent in Europe. During the pre‐removal phase (2014–2018), we performed scientific monitoring of the vegetation that was colonizing alluvium in the former dam reservoir (length: 19 km; surface area: 151 ha). Our study aimed to analyse if spontaneous vegetation could ecologically restore the riparian zone and help maintain fine sediment after dam removal. We used colonization indicators related to vegetation structure, taxonomic richness and diversity, and composition. These indicators were calculated at two spatial scales (local, at a single site, and broad, along the reservoir). The aim was to (a) characterize the spontaneously established species pool; (b) analyse longitudinal patterns in vegetation colonization; and (c) assess temporal changes in the species community. Our results show that diverse plant communities have developed. Slight differences in longitudinal and lateral patterns existed; they were linked with habitat heterogeneity and the reservoir's slow pace of draining. We observed fast spontaneous terrestrialization, which has resulted in cover stabilization, decreased diversity, and the development of herbaceous riverbank communities, with very few invasive species. This finding suggests stabilization potential is high and passive ecological restoration could occur, at least locally. Further analyses focusing on functional traits could help inform future management decisions regarding revegetation on reservoir alluvium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号