共查询到19条相似文献,搜索用时 78 毫秒
1.
针对传统分类器对于非平衡数据的分类效果存在的问题,提出了一种基于高斯混合模型-期望最大化(GMM-EM)的对称翻转算法.该算法的核心思想是基于概率论中的"3σ法则"使数据达到平衡.首先,利用高斯混合模型和EM算法得到多数类与少数类数据的密度函数;其次,以少数类数据的均值为对称中心,根据"3σ法则"确定多数类侵入少数类的翻转边界,进行数据翻转,同时剔除与翻转区间中少数类原始数据数据重复的点;此时,若两类数据不平衡,则在翻转区域内使用概率密度增强方法使数据达到平衡.最后,从UCI、KEEL数据库中选取的14组数据使用决策树分类器对平衡后的数据进行分类,实例分析表明了该算法的有效性. 相似文献
2.
在许多业务应用中,非平衡数据分类问题都会频繁出现,然而这个问题仍未得到很好的解决.除了直接预测数据对应的分类标签,许多应用还可能关心这个预测的准确性有多少.然而,已有的许多研究都主要集中在分类准确度上而忽略分类概率预测值的准确度.为了解决这个问题,提出了一种新的线性回归算法,该算法在广义线性模型的框架下,结合广义极值(generalized extreme value, GEV)分布作为链接函数以及校准损失函数作为目标优化函数,形成凸优化问题,利用广义极值分布的非对称性解决非平衡数据分类问题.另外,由于广义极值分布的形状参数对建模精度有较大影响,还提出了2种参数寻优方法.在实验部分,人工数据集和真实数据集均表明所提算法有着优异的分类性能以及准确的分类概率预测. 相似文献
3.
《计算机应用与软件》2019,(4)
在灾害天气、故障诊断、网络攻击和金融欺诈等领域经常存在不平衡的数据集。针对随机森林算法在非平衡数据集上表现的分类性能差的问题,提出一种新的过采样方法:SCSMOTE(Seed Center Synthetic Minority Over-sampling Technique)算法。该算法的关键是在数据集的少数类样本中找出合适的候选样本,计算出候选样本的中心,在候选样本与样本中心之间产生新的少数类样本,实现了对合成少数类样本质量的控制。结合SCSMOTE算法与随机森林算法来处理非平衡数据集,通过在UCI数据集上对比实验结果表明,该算法有效提高了随机森林在非平衡数据集上的分类性能。 相似文献
4.
5.
6.
借鉴半监督分类的思想,本文提出一种基于改进EM算法的贝叶斯分类模型,对移动通信网络中存在的大量随机缺失的非平衡数据进行分类。首先,从实际数据中经过初步统计分析得到能在一定程度上反应变量状态的先验概率,并以此作为贝叶斯分类模型的初始值进行EM迭代训练,从而减少EM算法的迭代次数并改善EM算法对初始值的敏感性以及局部收敛的缺陷;然后,利用对历史移动通信数据进行训练得到的叶斯网络分类模型,对测试数据进行预测分类。实验结果表明,该方法大大提高了移动通信数据中负类样本的预测成功率,与传统的数理统计分析方法相比较,表现出了更好的性能。 相似文献
7.
8.
9.
针对传统分类算法在处理非平衡数据集所出现的少数类分类准确率较低的问题,通过引入加权系数和样本分布函数给出了一种新的模糊规则权重的计算方法.该方法加强了类间的对比度和差异性,削弱了类内差距.将该权重方法与Chi et al规则生成算法和模糊分类推理模型结合形成新的分类算法,对具有不同非平衡度的UCI数据集进行Matlab对比研究,所得结果验证了该算法的可靠性与有效性. 相似文献
10.
非平衡数据集分类问题研究进展 总被引:3,自引:0,他引:3
非平衡数据集广泛存在于现实世界中,其分类问题已经成为目前数据挖掘领域中的一个研究热点.文章综述了非平衡数据集分类问题的评价方法及其常用分类算法,分析了目前存在的主要困难,并指出需进一步解决的几个问题. 相似文献
11.
12.
将线性尺度空间的特征点扩展问题转化为多尺度数据集的同尺度内分类问题,该问题属于尺度不变的非平衡数据集分类问题。提出了一种基于尺度空间的核学习的采样算法来处理支持向量机(support vector machine,SVM)在非平衡数据集上的分类问题。其核心思想是首先在核空间中对少数类样本进行上采样,然后通过输入空间和核空间的距离关系寻找所合成样本在输入空间的原像,最后再采用SVM对其进行训练,从而有效克服了目前采样方法在不同空间处理训练样本所带来的数据不一致问题。该算法所采用的采样策略不仅能够降低数据失衡率,而且能够拓展少数类样本所形成的凸壳,从而更为有效地纠正最优分类超平面偏移问题。实验结果证明,所获得的结果分类器具有更好的泛化性能,能够在同尺度内有效扩展稳定特征点数量。 相似文献
13.
14.
欠采样是当前解决类不平衡问题的主流方法之一。现有研究表明,高效地处理类别重叠能够有效提升过采样方法的性能。然而,目前对欠采样的研究大多认为由于样本选择策略不当而导致的关键样本丢失是影响欠采样方法性能的主要原因,为此,研究者从不同的角度提出了一系列针对性的方法,但鲜有对欠采样中类别重叠的研究。提出一种融合贝叶斯后验概率和分布密度的欠采样方法(BPDDUS)实现重叠区域样本的检测和清洗,并通过样本的分布信息对清洗后的样本进行欠采样。具体来说,该方法通过贝叶斯后验概率对多数类样本中潜在的噪声和重叠样本进行清洗以增强分类决策边界的清晰度。对清洗后的多数类样本,引入全局分布密度和信息熵来度量样本对不平衡数据分类学习的重要程度并对其分配相应的采样权重。按样本权重欠采样并构建集成分类系统,以提升模型的泛化能力。在43个KEEL数据库数据集上进行的数值实验验证了所提的BPDDUS方法的有效性。 相似文献
15.
16.
为了改善传统支持向量机(SVM)对不平衡数据的分类效果,解决分类器对少类样本分类效果较差的问题,提出了一种复合SVM算法。该算法首先通过自适应合成采样(ADASYN)算法和不同错误代价(DEC)算法的结合,改善不平衡数据对超平面造成的偏移;然后引入一种新的修正算法对预测模型进行修正,提高预测模型对于不同数据特性的适应性。选择UCI数据库中的7组现实世界的不平衡数据集进行测试,实验表明在各个数据集上复合SVM算法性能均优于现有算法或与现有算法相当,分类性能平均提高了2.0%~20.9%,证明本算法的有效性和鲁棒性。 相似文献
17.
Ugo Fiore 《Concurrency and Computation》2020,32(18)
Learning on imbalanced datasets, where one class is underrepresented, is problematic and important at the same time. On the one hand, a limited number of positive examples restricts the generalization ability of classifiers. On the other hand, often, the class of interest is such exactly because it is rare. The Synthetic Minority Oversampling TEchnique (SMOTE) is a preprocessing method that creates new synthetic examples by interpolating between neighboring instances. In this work, an enhancement to SMOTE is proposed, which characterizes synthetic instances as solutions of attraction‐repulsion problems among the neighboring data points. Experimental evaluation shows an improvement in the positive predictive power of classification. 相似文献
18.
传统的分类算法在对不平衡数据进行分类时,容易导致少数类被错分。为了提高少数类样本的分类准确度,提出了一种基于改进密度峰值聚类的采样算法IDP-SMOTE。首先,采用Box-Cox变换和σ准则对密度峰值聚类算法进行改进,实现了聚类中心和离群点的自动判别;然后,将改进的密度峰值聚类算法与SMOTE升采样算法相结合,去除噪声数据,并基于少数类样本的局部密度和邻近距离,在子类的范围内合成采样数据。该算法有效避免了升采样导致的边界模糊,改善了类内不平衡及边界样本难以学习的问题,同时实现了自动聚类和重采样,防止了人为因素干扰。通过实验对比,验证了提出算法的有效性和自适应性。 相似文献
19.
基于改进SMOTE的非平衡数据集分类研究 总被引:1,自引:0,他引:1
针对SMOTE(Synthetic Minority Over-sampling Technique)在合成少数类新样本时存在的不足,提出了一种改进的SMOTE算法(SSMOTE)。该算法的关键是将支持度概念和轮盘赌选择技术引入到SMOTE中,并充分利用了异类近邻的分布信息,实现了对少数类样本合成质量和数量的精细控制。将SSMOTE与KNN(K-Nearest Neighbor)算法结合来处理不平衡数据集的分类问题。通过在UCI数据集上与其他重要文献中的相关算法进行的大量对比实验表明,SSMOTE在新样本的整体合成效果上表现出色,有效提高了KNN在非平衡数据集上的分类性能。 相似文献