首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural optimization methods based on the level set method are a new type of structural optimization method where the outlines of target structures can be implicitly represented using the level set function, and updated by solving the so‐called Hamilton–Jacobi equation based on a Eulerian coordinate system. These new methods can allow topological alterations, such as the number of holes, during the optimization process whereas the boundaries of the target structure are clearly defined. However, the re‐initialization scheme used when updating the level set function is a critical problem when seeking to obtain appropriately updated outlines of target structures. In this paper, we propose a new structural optimization method based on the level set method using a new geometry‐based re‐initialization scheme where both the numerical analysis used when solving the equilibrium equations and the updating process of the level set function are performed using the Finite Element Method. The stiffness maximization, eigenfrequency maximization, and eigenfrequency matching problems are considered as optimization problems. Several design examples are presented to confirm the usefulness of the proposed method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
An approximate level set method for three‐dimensional crack propagation is presented. In this method, the discontinuity surface in each cracked element is defined by element‐local level sets (ELLSs). The local level sets are generated by a fitting procedure that meets the fracture directionality and its continuity with the adjacent element crack surfaces in a least‐square sense. A simple iterative procedure is introduced to improve the consistency of the generated element crack surface with those of the adjacent cracked elements. The discrete discontinuity is treated by the phantom node method which is a simplified version of the extended finite element method (XFEM). The ELLS method and the phantom node technology are combined for the solution of dynamic fracture problems. Numerical examples for three‐dimensional dynamic crack propagation are provided to demonstrate the effectiveness and robustness of the proposed method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
An algorithm which couples the level set method (LSM) with the extended finite element method (X‐FEM) to model crack growth is described. The level set method is used to represent the crack location, including the location of crack tips. The extended finite element method is used to compute the stress and displacement fields necessary for determining the rate of crack growth. This combined method requires no remeshing as the crack progresses, making the algorithm very efficient. The combination of these methods has a tremendous potential for a wide range of applications. Numerical examples are presented to demonstrate the accuracy of the combined methods. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
Interface capturing methods using enriched finite element formulations are well suited for solving multimaterial transport problems that contain weak or strong discontinuities. The conformal decomposition FEM decomposes multimaterial elements of a non‐conforming background mesh into sub‐elements that conform to material interfaces captured using a level set method. As the interface evolves, interfacial nodes move, and background nodes may change material. The present work describes approaches for handling moving interfaces in the context of the conformal decomposition FEM for both weakly and strongly discontinuous fields. Dynamic discretization methods using extrapolation and moving mesh approaches are considered and developed with first‐order and second‐order time integration methods. The moving mesh approach is demonstrated to be a stable method that preserves both weak and strong discontinuities on a variety of one‐dimensional and two‐dimensional test problems, while achieving the expected second‐order error convergence rate in space and time. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The level set method is a promising approach to provide flexibility in dealing with topological changes during structural optimization. Normally, the level set surface, which depicts a structure's topology by a level contour set of a continuous scalar function embedded in space, is interpolated on a fixed mesh. The accuracy of the boundary positions is therefore largely dependent on the mesh density, a characteristic of any Eulerian expression when using a fixed mesh. This article combines the adaptive moving mesh method with a level set structure topology optimization method. The finite element mesh automatically maintains a high nodal density around the structural boundaries of the material domain, whereas the mesh topology remains unchanged. Numerical experiments demonstrate the effect of the combination of a Lagrangian expression for a moving mesh and a Eulerian expression for capturing the moving boundaries.  相似文献   

6.
We propose a robust immersed finite element method in which an integral equation formulation is used to enforce essential boundary conditions. The solution of a boundary value problem is expressed as the superposition of a finite element solution and an integral equation solution. For computing the finite element solution, the physical domain is embedded into a slightly larger Cartesian (box‐shaped) domain and is discretized using a block‐structured mesh. The defect in the essential boundary conditions, which occurs along the physical domain boundaries, is subsequently corrected with an integral equation method. In order to facilitate the mapping between the finite element and integral equation solutions, the physical domain boundary is represented with a signed distance function on the block‐structured mesh. As a result, only a boundary mesh of the physical domain is necessary and no domain mesh needs to be generated, except for the non‐boundary‐conforming block‐structured mesh. The overall approach is first presented for the Poisson equation and then generalized to incompressible viscous flow equations. As an example of fluid–structure coupling, the settling of a heavy rigid particle in a closed tank is considered. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
An adaptive mesh refinement (AMR) technique is proposed for level set simulations of incompressible multiphase flows. The present AMR technique is implemented for two‐dimensional/three‐dimensional unstructured meshes and extended to multi‐level refinement. Smooth variation of the element size is guaranteed near the interface region with the use of multi‐level refinement. A Courant–Friedrich–Lewy condition for zone adaption frequency is newly introduced to obtain a mass‐conservative solution of incompressible multiphase flows. Finite elements around the interface are dynamically refined using the classical element subdivision method. Accordingly, finite element method is employed to solve the problems governed by the incompressible Navier–Stokes equations, using the level set method for dynamically updated meshes. The accuracy of the adaptive solutions is found to be comparable with that of non‐adaptive solutions only if a similar mesh resolution near the interface is provided. Because of the substantial reduction in the total number of nodes, the adaptive simulations with two‐level refinement used to solve the incompressible Navier–Stokes equations with a free surface are about four times faster than the non‐adaptive ones. Further, the overhead of the present AMR procedure is found to be very small, as compared with the total CPU time for an adaptive simulation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
A stabilized finite element method based on the Nitsche technique for enforcing constraints leads to an efficient computational procedure for embedded interface problems. We consider cases in which the jump of a field across the interface is given, as well as cases in which the primary field on the interface is given. The finite element mesh need not be aligned with the interface geometry. We present closed‐form analytical expressions for interfacial stabilization terms and simple procedures for accurate flux evaluations. Representative numerical examples demonstrate the effectiveness of the proposed methodology. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
In this work, a reinitialization procedure oriented to regularize the level set (LS) function field is presented. In LS approximations for two‐fluid flow simulations, a scalar function indicates the presence of one or another phase and the interface between them. In general, the advection of such function produces a degradation of some properties of the LS function, such as the smoothness of the transition between phases and the correct position of the interface. The methodology introduced here, denominated bounded renormalization with continuous penalization, consists of solving by the finite element method a partial differential equation with certain distinguishing properties with the aim of keeping the desirable properties of the LS function. The performance of the strategy is evaluated for several typical cases in one, two and three‐dimensional domains, for both the advection and the renormalization stages. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
We consider a standard model for incompressible two‐phase flows in which a localized force at the interface describes the effect of surface tension. If a level set method is applied then the approximation of the interface is in general not aligned with the triangulation. This causes severe difficulties w.r.t. the discretization and often results in large spurious velocities. In this paper we reconsider a (modified) extended finite element method (XFEM), which in previous papers has been investigated for relatively simple two‐phase flow model problems, and apply it to a physically realistic levitated droplet problem. The results show that due to the extension of the standard FE space one obtains much better results in particular for large interface tension coefficients. Furthermore, a certain cut‐off technique results in better efficiency without sacrificing accuracy. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
A finite element method for axisymmetric two‐phase flow problems is presented. The method uses an enriched finite element formulation, in which the interface can move arbitrarily through the mesh without remeshing. The enrichment is implemented by the extended finite element method (X‐FEM) which models the discontinuity in the velocity gradient at the interface by a local partition of unity. It provides an accurate representation of the velocity field at interfaces on an Eulerian grid that is not conformal to the weak discontinuity. The interface is represented by a level set which is also used in the construction of the element enrichment. Surface tension effects are considered and the interface curvature is computed from the level set field. The method is demonstrated by several examples. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
13.
This paper presents a computational technique based on the extended finite element method (XFEM) and the level set method for the growth of biofilms. The discontinuous‐derivative enrichment of the standard finite element approximation eliminates the need for the finite element mesh to coincide with the biofilm–fluid interface and also permits the introduction of the discontinuity in the normal derivative of the substrate concentration field at the biofilm–fluid interface. The XFEM is coupled with a comprehensive level set update scheme with velocity extensions, which makes updating the biofilm interface fast and accurate without need for remeshing. The kinetics of biofilms are briefly given and the non‐linear strong and weak forms are presented. The non‐linear system of equations is solved using a Newton–Raphson scheme. Example problems including 1D and 2D biofilm growth are presented to illustrate the accuracy and utility of the method. The 1D results we obtain are in excellent agreement with previous 1D results obtained using finite difference methods. Our 2D results that simulate finger formation and finger‐tip splitting in biofilms illustrate the robustness of the present computational technique. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
A hybrid numerical method for modelling the evolution of sharp phase interfaces on fixed grids is presented. We focus attention on two‐dimensional solidification problems, where the temperature field evolves according to classical heat conduction in two subdomains separated by a moving freezing front. The enrichment strategies of the eXtended Finite Element Method (X‐FEM) are employed to represent the jump in the temperature gradient that governs the velocity of the phase boundary. A new approach with the X‐FEM is suggested for this class of problems whereby the partition of unity is constructed with C1(Ω) polynomials and enriched with a C0(Ω) function. This approach leads to jumps in temperature gradient occurring only at the phase boundary, and is shown to significantly improve estimates for the front velocity. Temporal derivatives of the temperature field in the vicinity of the phase front are obtained with a projection that employs discontinuous enrichment. In conjunction with a finer finite difference grid, the Level Set method is used to represent the evolution of the phase interface. An iterative procedure is adopted to satisfy the constraints on the temperature field on the phase boundary. The robustness and utility of the method is demonstrated with several benchmark problems of phase transformation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents a method to solve two‐phase flows using the finite element method. On one hand, the algorithm used to solve the Navier–Stokes equations provides the neccessary stabilization for using the efficient and accurate three‐node triangles for both the velocity and pressure fields. On the other hand, the interface position is described by the zero‐level set of an indicator function. To maintain accuracy, even for large‐density ratios, the pseudoconcentration function is corrected at the end of each time step using an algorithm successfully used in the finite difference context. Coupling of both problems is solved in a staggered way. As demonstrated by the solution of a number of numerical tests, the procedure allows dealing with problems involving two interacting fluids with a large‐density ratio. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
A numerical method for simulating fluid–elastic solid interaction with surface tension is presented. A level set method is used to capture the interface between the solid bodies and the incompressible surrounding fluid, within an Eulerian approach. The mixed velocity–pressure variational formulation is established for the global coupled mechanical problem and discretized using a continuous linear approximation in both velocity and pressure. Three ways are investigated to reduce the spurious oscillations of the pressure that appear at the fluid–solid interface. First, two stabilized finite element methods are used: the MINI‐element and the algebraic subgrid method. Second, the surface integral corresponding to the surface tension term is treated either by the continuum surface force technique or by a surface local reconstruction algorithm. Finally, besides the direct evaluation method proposed by Bruchon et al., an alternative method is proposed to avoid the explicit computation of the surface curvature, which may be a source of difficulty. These different issues are addressed through various numerical examples, such as the two incompressible fluid flow, the elastic inclusion embedded into a Newtonian fluid, or the study of a granular packing. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Level set methods have recently gained much popularity to capture discontinuities, including their possible propagation. Typically, the partial differential equations that arise in level set methods, in particular the Hamilton–Jacobi equation, are solved by finite difference methods. However, finite difference methods are less suited for irregular domains. Moreover, it seems slightly awkward to use finite differences for the capturing of a discontinuity, while in a subsequent stress analysis finite elements are normally used. For this reason, we here present a finite element approach to solving the governing equations of level set methods. After a review of the governing equations, the initialization of the level sets, the discretization on a finite domain, and the stabilization of the resulting finite element method will be discussed. Special attention will be given to the proper treatment of the internal boundary condition, which is achieved by exploiting the partition‐of‐unity property of finite element shape functions. Finally, a quantitative analysis including accuracy analysis is given for a one‐dimensional example and a qualitative example is given for a two‐dimensional case with a curved discontinuity. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
The aim of the paper is to study the capabilities of the extended finite element method (XFEM) to achieve accurate computations in non‐smooth situations such as crack problems. Although the XFEM method ensures a weaker error than classical finite element methods, the rate of convergence is not improved when the mesh parameter h is going to zero because of the presence of a singularity. The difficulty can be overcome by modifying the enrichment of the finite element basis with the asymptotic crack tip displacement solutions as well as with the Heaviside function. Numerical simulations show that the modified XFEM method achieves an optimal rate of convergence (i.e. like in a standard finite element method for a smooth problem). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
We examine a bubble‐stabilized finite element method for enforcing Dirichlet constraints on embedded interfaces. By ‘embedded’ we refer to problems of general interest wherein the geometry of the interface is assumed independent of some underlying bulk mesh. As such, the robust imposition of Dirichlet constraints using a Lagrange multiplier field is not trivial. To focus issues, we consider a simple one‐sided problem that is representative of a wide class of evolving‐interface problems. The bulk field is decomposed into coarse and fine scales, giving rise to coarse‐scale and fine‐scale one‐sided sub‐problems. The fine‐scale solution is approximated with bubble functions, permitting static condensation and giving rise to a stabilized form bearing strong analogy with a classical method. Importantly, the method is simple to implement, readily extends to multiple dimensions, obviates the need to specify any free stabilization parameters, and can lead to a symmetric, positive‐definite system of equations. The performance of the method is then examined through several numerical examples. The accuracy of the Lagrange multiplier is compared to results obtained using a local version of the domain integral method. The variational multiscale approach proposed herein is shown to both stabilize the Lagrange multiplier and improve the accuracy of the post‐processed fluxes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, a piecewise constant level set (PCLS) method is implemented to solve a structural shape and topology optimization problem. In the classical level set method, the geometrical boundary of the structure under optimization is represented by the zero level set of a continuous level set function, e.g. the signed distance function. Instead, in the PCLS approach the boundary is described by discontinuities of PCLS functions. The PCLS method is related to the phase‐field methods, and the topology optimization problem is defined as a minimization problem with piecewise constant constraints, without the need of solving the Hamilton–Jacobi equation. The result is not moving the boundaries during the iterative procedure. Thus, it offers some advantages in treating geometries, eliminating the reinitialization and naturally nucleating holes when needed. In the paper, the PCLS method is implemented with the additive operator splitting numerical scheme, and several numerical and procedural issues of the implementation are discussed. Examples of 2D structural topology optimization problem of minimum compliance design are presented, illustrating the effectiveness of the proposed method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号