首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural fiber‐reinforced nanocomposites based on polypropylene/nanoclay/banana fibers were fabricated by melt mixing in a twin‐screw extruder followed by compression molding in this current study. Maleic anhydride polypropylene copolymer (MA‐g‐PP) was used as a compatibilizer to increase the compatibility between the PP matrix, clay, and banana fiber to enhance exfoliation of organoclay and dispersion of fibers into the polymer matrix. Variation in mechanical, thermal, and physico‐mechanical properties with the addition of banana fiber into the PP nanocomposites was investigated. It was observed that 3 wt% of nanoclay and 5 wt% of MA‐g‐PP within PP matrix resulted in an increase in tensile and flexural strength by 41.3% and 45.6% as compared with virgin PP. Further, incorporation of 30 wt% banana fiber in PP nanocomposites system increases the tensile and flexural strength to the tune of 27.1% and 15.8%, respectively. The morphology of fiber reinforced PP nanocomposites has been examined by using scanning electron microscopy and transmission electron microscopy. Significant enhancement in the thermal stability of nanocomposites was also observed due to the presence of nanoclay under thermogravimetric analysis. Dynamic mechanical analysis tests revealed an increase in storage modulus (E′) and damping factor (tan δ), conforming the strong interaction between nanoclay/banana fiberand MA‐g‐PP in the fiber‐reinforced nanocomposites systems. POLYM. COMPOS., © 2011 Society of Plastics Engineers.  相似文献   

2.
A two‐step process was used to obtain long sisal fiber‐polypropylene (SF/PP)–reinforced thermoplastic composites, using maleic anhydride grafted polypropylene (MA‐g‐PP) as a compatibilizer. At a first stage, modified polypropylenes (mPP) were used for an extrusion impregnation process, for the preparation of composite pellets containing about 70 wt% of SF. SF/mPP pellets with a large aspect ratio were prepared by continuous extrusion impregnation of a continuous SF yarn, using a single screw extruder and an adequate impregnation die. The mPP used were MA‐g‐PP and regular polypropylene (PP), modified by reaction with different amounts of an organic peroxide. The composite pellets were thus dry blended with regular PP pellets in an injection machine hopper, and injection molded to obtain composite tensile specimens with a minimum quantity of modified polypropylene, minimum fiber breakage and thermal degradation, and excellent mechanical properties. It is shown that the fiber breakage is reduced to a minimum, even for recycled composites, due to the presence of the low‐viscosity polymer layer wetting the SF fibers. The bulk composite effective viscosity and the fiber breakage extent and thermal degradation during the injection‐molding step are found to be closely related. Blending with much less expensive mPP at the impregnation stage optimizes the amount of expensive MA‐g‐PP. POLYM. ENG. SCI., 45:613–621, 2005. © 2005 Society of Plastics Engineers  相似文献   

3.
剑麻纤维/聚丙烯木塑复合材料的热氧老化性能研究   总被引:4,自引:1,他引:4  
以剑麻纤维(SF)、聚丙烯(PP)为原料,经熔融共混、模压成型工艺制备木塑复合材料。探讨了SF/PP复合材料的力学性能、热性能随老化时间和SF含量的变化规律,借助扫描电镜对复合材料老化前后的冲击断面进行微观结构分析。结果表明:老化后复合材料的冲击强度、弯曲强度和弯曲模量随剑麻含量的增加而降低;同时,复合材料中PP相的结晶速率、结晶度也有所降低,但复合材料的热稳定性基本没有变化。  相似文献   

4.
剑麻纤维与晶须混杂增强聚丙烯复合材料   总被引:7,自引:0,他引:7  
采用熔融共混和注塑成型方法制得了剑麻短纤维(SF)和CaSO4晶须混杂增强聚丙烯(PP)复合材料,研究了复合材料的热性能、微观结构和力学性能。结果表明,晶须提高了复合材料的热稳定性,阻碍了PP的结晶,降低了复合材料中PP相的结晶度和结晶速率;SF和晶须提高了复合材料的模量和韧性,但由于混杂增强复合材料弱界面键合的制约,晶须的高强性能并没有在复合材料中充分表现出来。  相似文献   

5.
Composites of polypropylene (PP) and non‐treated sisal fiber (SF) were prepared in a non‐conventional two‐step process that offers significant advantages. Maleic anhydride–grafted polypropylene (MA‐g‐PP) was used as a coupling agent, to improve adhesion between the polar sisal fiber and the non‐polar polypropylene continuous matrix. At a first step, SF/MA‐g‐PP pellets with large aspect ratio and very high fiber content are prepared by extrusion impregnation and coating of a continuous SF yarn, followed by cooling and cutting. The composite pellets are thus dry blended with regular PP pellets in the injection machine hopper, and injected to obtain composite tensile specimens with a minimum quantity of expensive MA‐g‐PP, minimum fiber breakage and thermal degradation, and excellent mechanical properties. The SF/MA‐g‐PP pellets have a fiber content of 70% (w/w). The composite tensile specimens have final fiber contents ranging from about 3.5% to 24.5% (w/w). The PP tensile strength rises by about 44%. The tensile modulus increases by 126%, and the heat distortion temperature (HDT) is raised by about 35 K. FT‐IR spectroscopy and SEM micrographic observation show that the MA‐g‐PP is covalently bonded to SF through esterification. Besides the improvement in mechanical and thermal properties, costs are reduced because of the lower content of very expensive MA‐g‐PP, and the use of a single‐screw extruder at high production rates. Polym. Eng. Sci. 44:1766–1772, 2004. © 2004 Society of Plastics Engineers.  相似文献   

6.
Recycled high‐density polyethylene (RHDPE)/coir fiber (CF)‐reinforced biocomposites were fabricated using melt blending technique in a twin‐screw extruder and the test specimens were prepared in an automatic injection molding machine. Variation in mechanical properties, crystallization behavior, water absorption, and thermal stability with the addition of fly ash cenospheres (FACS) in RHDPE/CF composites were investigated. It was observed that the tensile modulus, flexural strength, flexural modulus, and hardness properties of RHDPE increase with an increase in fiber loading from 10 to 30 wt %. Composites prepared using 30 wt % CF and 1 wt % MA‐g‐HDPE exhibited optimum mechanical performance with an increase in tensile modulus to 217%, flexural strength to 30%, flexural modulus to 97%, and hardness to 27% when compared with the RHDPE matrix. Addition of FACS results in a significant increase in the flexural modulus and hardness of the RHDPE/CF composites. Dynamic mechanical analysis tests of the RHDPE/CF/FACS biocomposites in presence of MA‐g‐HDPE revealed an increase in storage (E′) and loss (E″) modulus with reduction in damping factor (tan δ), confirming a strong influence between the fiber/FACS and MA‐g‐HDPE in the RHDPE matrix. Differential scanning calorimetry, thermogravimetric analysis thermograms also showed improved thermal properties in the composites when compared with RHDPE matrix. The main motivation of this study was to prepare a value added and low‐cost composite material with optimum properties from consumer and industrial wastes as matrix and filler. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42237.  相似文献   

7.
Composites based on isotactic polypropylene (PP) and sisal fiber (SF) were prepared by melt mixing and injection molding. The melt mixing characteristics, thermal properties, morphology, crystalline structure, and mechanical behavior of the PP/SF composites were systematically investigated. The results show that the PP/SF composites can be melt mixed and injection molded under similar conditions as the PP homo‐polymer. For the composites with low sisal fiber content, the fibers act as sites for the nucleation of PP spherulites, and accelerate the crystallization rate and enhance the degree of crystallinity of PP. On the other hand, when the sisal fiber content is high, the fibers hinder the molecular chain motion of PP, and retard the crystallization. The inclusion of sisal fiber induces the formation of β‐form PP crystals in the PP/SF composites and produces little change in the inter‐planar spacing corresponding to the various diffraction peaks of PP. The apparent crystal size as indicated by the several diffraction peaks such as L(110)α, L(040)α, L(130)α and L(300)β of the α and β‐form crystals tend to increase in the PP/SF composites considerably. These results lead to the increase in the melting temperature of PP. Moreover, the stiffness of the PP/SF composites is improved by the addition of sisal fibers, but their tensile strength decreases because of the poor interfacial bonding. The PP/SF composites are toughened by the sisal fibers due to the formation of β‐form PP crystals and the pull‐out of sisal fibers from the PP matrix, both factors retard crack growth.  相似文献   

8.
This study describes the reinforcement effect of surface modified mullite fibers on the crystallization, thermal stability, and mechanical properties of polypropylene (PP). The nanocomposites were developed using polypropylene‐grafted‐maleic anhydride (PP‐g‐MA) as compatibilizer with different weight ratios (0.5, 1.0, 1.5, 2.5, 5.0, and 10.0 wt %) of amine functionalized mullite fibers (AMUF) via solution blending method. Chemical grafting of AMUF with PP‐g‐MA resulted in enhanced filler dispersion in the polymer as well as effective filler‐polymer interactions. The dispersion of nanofiller in the polymer matrix was identified using scanning electron microscopy (SEM) elemental mapping and transmission electron microscopy (TEM) analysis. AMUF increased the Young's modulus of PP in the nanocomposites up to a 5 wt % filler content, however, at 10 wt % loading, a decrease in the modulus resulted due to agglomeration of AMUF. The impact strength of PP increased simultaneously with the modulus as a function of AMUF content (up to 5 wt %). The mechanical properties of PP‐AMUF nanocomposites exhibited improved thermal performance as compared to pure PP matrix, thus, confirming the overall potential of the generated composites for a variety of structural applications. The mechanical properties of 5 wt % of AMUF filled PP nanocomposite were also compared with PP nanocomposites generated with unmodified MUF and the results confirmed superior mechanical properties on incorporation of modified filler. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43725.  相似文献   

9.
With the rising cost of petroleum‐based fibers, the utilization of plant fibers in the manufacture of polymer–matrix composites is gaining importance worldwide. The scope of this study was to examine the perspective of the use of pineapple leaf fibers (PALFs) as reinforcements for polypropylene (PP). These fibers are environmentally friendly, low‐cost byproducts of pineapple cultivation and are readily available in the northeastern region of India. Here, both untreated and treated pineapple fibers were used. Maleic anhydride grafted polypropylene (MA‐g‐PP) was used as a compatibilizing agent. The polymer matrix of PP was used to prepare composite specimens with different volume fractions (5–20%) of fibers by the addition of 5% of MA‐g‐PP. These specimens were tested for their mechanical properties, and additional assessments were made via observations by scanning electron microscopy, thermogravimetric analysis, and IR spectroscopy. Increase in the impact behavior, flexural properties, and tensile moduli of the composites were noticed, and these were more appreciable in the treated fibers mixed with MA‐g‐PP. PALF in 10 vol % in PP mixed with MA‐g‐PP was the optimum and recommended composition, where the flexural properties were the maximum. The impact strength and the tensile modulus were also considerably high. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Polypropylene (PP) composites containing 20 wt% short flax fibers are prepared, and the process parameters such as throughput, rotational speed, and screw configuration are varied during melt compounding with a corotating intermeshing twin‐screw extruder. The investigations reveal that low rotational speeds, high throughputs, and moderate shear energy inputs by the screw configuration led to an optimum set of mechanical properties. To investigate the influence of different composite compositions on the mechanical properties, composites with fiber contents between 0 and 40 wt% and maleic anhydride‐grafted PP (PP‐g‐MA) contents between 0 and 7 wt% are prepared. Increasing fiber contents enhance the Young's modulus and decrease the elongation at break and the notched impact strength. The tensile strength is barely affected. The addition of PP‐g‐MA increases the tensile strength as well as the elongation at break, whereas the Young's modulus is not influenced. Thus, PP‐g‐MA enhances the adhesion between PP and flax fibers significantly. POLYM. COMPOS., 36:2282–2290, 2015. © 2014 Society of Plastics Engineers  相似文献   

11.
Binary composites of high‐crystalline fibrous cellulose with polypropylene (PP) or maleic anhydride‐grafted polypropylene (MAPP) were prepared by melt‐mixing with different contents of cellulose from 0 to 60 wt %. Ternary composites of cellulose with PP and MAPP were also prepared to investigate the effects of MAPP as a compatibilizer between cellulose and PP. Scanning electron microscopy revealed that the addition of MAPP generates strong interactions between a PP matrix and cellulose fibers: All cellulose fibers are encapsulated by layers of the matrix and connected tightly within the matrix. Thus, the tensile strength and Young's modulus of MAPP‐containing composites increase with an increase in MAPP and cellulose content, in contrast to the decrease in tensile strength of a PP‐based binary composite with an increase in cellulose. Cellulose fibers act as a nucleating agent for the crystallization of PP, which is promoted by the addition of MAPP through an increase of the crystallization temperature of PP in the composite. Accordingly, both cellulose and MAPP facilitate the thermooxidative stability of PP composites in the following order: MAPP/cellulose > PP/MAPP/cellulose > PP/cellulose > PP. Relative water absorption increases with an increase in cellulose content, decreasing with the addition of MAPP. MAPP‐containing cellulose composites have high potential for applications as environmentally friendly materials. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 337–345, 2003  相似文献   

12.
Composites were prepared with chemically modified banana fibers in polypropylene (PP). The effects of 40‐mm fiber loading and resin modification on the physical, mechanical, thermal, and morphological properties of the composites were evaluated with scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Infrared (IR) spectroscopy, and so on. Maleic anhydride grafted polypropylene (MA‐g‐PP) compatibilizer was used to improve the fiber‐matrix adhesion. SEM studies carried out on fractured specimens indicated poor dispersion in the unmodified fiber composites and improved adhesion and uniform dispersion in the treated composites. A fiber loading of 15 vol % in the treated composites was optimum, with maximum mechanical properties and thermal stability evident. The composite with 5% MA‐g‐PP concentration at a 15% fiber volume showed an 80% increase in impact strength, a 48% increase in flexural strength, a 125% increase in flexural modulus, a 33% increase in tensile strength, and an 82% increase in tensile modulus, whereas the heat deflection temperature increased by 18°C. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
Ester‐based thermoplastic polyurethane (TPU) nanocomposites were prepared by melt blending at 190°C, using 3 wt% Cloisite 10A (organically modified montmorillonite clay) as the nanoscale reinforcement [TPU(C10A)]. The nanocomposites were subsequently melt‐blended with polypropylene (PP) using maleic anhydride–grafted polypropylene (MA‐g‐PP) as a compatibilizer [in the ratio of 70/30‐TPU/PP, 70/25/5‐TPU/PP/MA‐g‐PP, 70/25/5‐TPU (C10A)/PP/MA‐g‐PP]. Besides giving substantial increase in modulus, tensile strength, and other properties, organoclay reinforcement functions as a surface modifier for TPU hard segment resulting in improved dispersion. The morphology and other characteristics of the nanocomposite blends were investigated in terms of X‐ray diffraction, fourier transform infrared spectroscopy, differential scanning calorimetry, dynamic mechanical analysis, tensile properties, scanning electron microscopy, and atomic force microscopy. The results indicate that the ester‐TPU(C10A)/PP/MA‐g‐PP exhibited better dispersion than other blend systems; abrasion resistance and water absorption resistance were also better for this system. POLYM. ENG. SCI., 50:1878–1886, 2010. © 2010 Society of Plastics Engineers  相似文献   

14.
Amine functionalized multiwalled carbon nanotubes (a‐MWNT) based polypropylene (PP) composite fibers were prepared in the presence of polypropylene‐g‐maleic anhydride (PP‐g‐MA) by melt‐mixing followed by melt‐spinning with subsequent post‐drawing of the as‐spun fibers of varying draw ratio (DR). In order to enhance the interfacial interaction, a‐MWNT were utilized in combination with PP‐g‐MA during melt‐mixing. Fourier transform infrared spectroscopic analysis revealed the formation of imide bonds between MA functionality of PP‐g‐MA and amine functional group of a‐MWNT. Higher tensile properties of PP/a‐MWNT/PP‐g‐MA composite fibers were registered with varying DR of the as‐spun fiber. Orientation factors of a‐MWNT and PP chains along the fiber axis were correlated with the higher tensile modulus and tensile strength of PP/a‐MWNT/PP‐g‐MA composite fiber of varying DR. Crystallization studies indicated the role of hetero‐nucleating action of a‐MWNT in PP/a‐MWNT/PP‐g‐MA composite fiber. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

15.
The investigation of the economical use of lignocellulose waste, which is one of the environmental problems facing nations, is ongoing. In this study, waste cardboard paper fiber reinforcing polypropylene (PP) composites was developed. In order to modify the PP matrix maleated PP (MA‐g‐PP) a 5 wt% and a grafting rate of 1 and 2 wt% was used as a compatibilizer. The effects of fiber and compatibilizer content as well as graft content are evaluated by mechanical, thermal property measurements, and scanning electron microscopy (SEM). The compatibilizer improved all mechanical properties significantly. Thus, the tensile strength of MA‐g‐PP‐containing composites increases compared to PP/cardboard composites paper content increases. However, the tensile modulus of a PP‐based composite increases with an increase in paper fiber with the compatibilizer having little effect. SEM revealed that the addition of MA‐g‐PP generates strong interactions between a PP matrix and paper fibers. However, the addition of the MA‐g‐PP compatibilizing agent gives a significant improvement on the crystallization of the composites, whereas the compatibilized PP/old corrugated cardboard (OCC) composites have higher crystallinity (Xc) than uncompatibilized PP/OCC composites. The MA‐g‐PP also diminished the water absorption in the composites. J. VINYL ADDIT. TECHNOL., 22:231–238, 2016. © 2014 Society of Plastics Engineers  相似文献   

16.
Short natural fiber thermoplastic composites are usually fabricated by melt mixing or solution mixing followed by conventional methods like injection molding or compression molding. In melt mixing, the fibers are subjected to high shear and this damage the natural fiber. In solution mixing, the use of the organic solvent is essential and its use is hazardous. Development of a novel method commingling to prepare polypropylene (PP)/short natural fiber composite is the main objective of this study. The influence of fiber loading on the mechanical properties of the composites prepared by the above method has been evaluated. The applications and limitations of several equations to predict physical properties such as tensile strength and modulus of the composites have been described. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

17.
Polypropylene/Pine apple leaf fiber (PP/PALF)‐reinforced nanocomposites were fabricated using melt blending technique in a twin‐screw extruder (Haake Rheocord 9000). Variation in mechanical properties, crystallization behavior, water absorption, and thermal stability with the addition of nanoclay in PP/PALF composites were investigated. It was observed that the tensile, flexural, and impact properties of PP increase with the increase in fiber loading from 10 to 30 wt %. Composites prepared using 30 wt % PALF and 5 wt % MA‐g‐PP exhibited optimum mechanical performance with an increase in tensile strength to 31%, flexural strength to 45% when compared with virgin PP. Addition of nanoclay results in a further increase in tensile and flexural strength of PP/PALF composites to 20 and 24.3%, which shows intercalated morphology. However, addition of nanoclay does not show any substantial increase in impact strength when compared with PP/PALF composites. Dynamic mechanical analysis tests revealed an increase in storage modulus (E′) and damping factor (tan δ), confirming a strong influence between the fiber/nanoclay and MA‐g‐PP. Differential scanning calorimetry, thermogravimetric analysis thermograms also showed improved thermal properties when compared with the virgin matrix. TEM micrographs also showed few layers of agglomerated clay galleries along with mixed nanomorphology in the nanocomposites. Wide angle X‐ray diffraction studies indicated an increase in d‐spacing from 22.4 Å in Cloisite 20A to 40.1 Å in PP/PALF nanocomposite because of improved intercalated morphology. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
Polypropylene/jute fiber (PP‐J) composites with various concentrations of viscose fibers (VF) as impact modifiers and maleated polypropylene (MAPP) as a compatibilizer have been studied. The composite materials were manufactured using direct long fiber thermoplastic (D‐LFT) extrusion and compression molding. The effect of fiber length, after the extrusion process, on composites mechanical performance and toughness was investigated. The results showed that the incorporation of soft and tough VF on the PP‐J improved the energy absorption of the composites. The higher impact strength was found with the addition of 10 wt % of the impact modifier, but the increased concentration of the impact modifier affected the tensile and flexural properties negatively. Similarly, HDT values were reduced with addition of viscose fibers whereas the addition of 2 wt % of maleated polypropylene significantly improved the overall composite properties. The microscopic analysis clearly demonstrated longer fiber pullouts on the optimized impact modified composite. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41301.  相似文献   

19.
Short‐glass‐fiber (SGF)‐reinforced polypropylene (PP) composites toughened with a styrene/ethylene butylene/styrene (SEBS) triblock copolymer were injection molded after extrusion. Furthermore, a maleic anhydride (MA)‐grafted SEBS copolymer (SEBS‐g‐MA) was used as an impact modifier and compatibilizer. The effects of the processing conditions and compatibilizer on the microstructure and tensile and impact performance of the hybrid composites were investigated. In the route 1 fabrication process, SGF, PP, and SEBS were blended in an extruder twice, and this was followed by injection molding. In route 2, or the sequential blending process, the elastomer and PP were mixed thoroughly before the addition of SGF. In other words, either PP and SEBS or PP and SEBS‐g‐MA pellets were premixed in an extruder. The produced pellets were then blended with SGF in the extruder, and this was followed by injection molding. The SGF/SEBS‐g‐MA/PP hybrid fabricated by the route 2 process exhibited the highest modulus, yield stress, tensile stress at break, Izod impact energy, and Charpy drop weight impact strength among the composites investigated. This was due to the formation of a homogeneous SEBS elastomeric interlayer at the SGF and matrix interface of the SGF/SEBS‐g‐MA/PP hybrid. This SEBS rubbery layer enhanced the interfacial bonding between SGF and the matrix of the SGF/SEBS‐g‐MA/PP hybrid. The correlations between the processing, microstructure, and properties of the hybrids were investigated. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1384–1392, 2003  相似文献   

20.
In this work, the effects of nanoclay (1–4 wt %) and coupling agent (2 and 4 wt %) loading on the physical and mechanical properties of nanocomposites are investigated. Composites based on polypropylene (PP), bagasse flour, and nanoclay (montmorillonite type) was made by melt compounding and then compression molding. When 1–3 wt % nanoclay was added, the tensile properties increased significantly, but then decreased slightly as the nanoclay content increased to 4%. The impact strength was 6% lower by the addition of 1 wt % nanoclay, it was decreased further when the nanoclay content increased from 1 to 4%. Finally, the water absorption of PP/bagasse composites was lowered with the increase in nanoclay content. Additionally, the coupling agent, 4 wt % MAPP, improved the mechanical and physical properties of the composites more than the 2 wt % MAPP. From these results, we can conclude that addition of nanoclay enables to achieve better physical and mechanical properties in conventional composites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号