首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Poly(GMA/MMA) beads were synthesized from glycidyl methacrylate (GMA) and methyl methacrylate (MMA) in the presence of a cross‐linker (i.e. ethyleneglycol dimethacrylate) (EGDMA) via suspension polymerization. The epoxy groups of the poly(GMA/MMA) beads were converted into amino groups with either ammonia or 1,6‐diaminohexane (i.e. spacer‐arm). An L ‐histidine ligand was then covalently immobilized on the aminated (poly(GMA/MMA)‐AH) and/or the spacer‐arm attached (poly(GMA/MMA)‐SAH) beads using glutaric dialdehyde as a coupling agent. Both affinity adsorbents were used in human serum albumin (HSA) adsorption/desorption studies under defined pH, ionic strength or temperature conditions in a batch reactor. The spacer‐arm attached affinity adsorbent resulted in an increase in the adsorption capacity to HSA when compared to the aminated counterpart (i.e. poly(GMA/MMA)‐AH). The maximum adsorption capacities of the affinity adsorbents were found to be significantly high, i.e. 43.7 and 80.2 mg g?1 (of the beads), while the affinity constants, evaluated by the Langmuir model, were 3.96 × 10?7 and 9.53 × 10?7 mol L?1 for poly(GMA/MMA)‐AH and poly(GMA/MMA)‐SAH, respectively. The adsorption capacities of the affinity adsorbents were decreased for HSA by increasing the ionic strength, adjusted with NaCl. The adsorption kinetics of HSA were analysed by using pseudo‐first and pseudo‐second‐order equations. The second‐order equation fitted well with the experimental data. Copyright © 2005 Society of Chemical Industry  相似文献   

2.
Composite membranes were prepared by incorporating ZSM‐5 zeolite into poly(ether‐block‐amide) (PEBA) membranes. These composite membranes were characterized by TGA, XRD, and SEM. The results showed that the zeolite could distribute well in the polymer matrix. And when the zeolite content reached 10%, the agglomeration of zeolite in the membranes was found. The composite membranes were used to the pervaporative separation of n‐butanol aqueous solution. The effect of zeolite content on pervaporation performance was investigated. With the contribution of preferential adsorption and diffusion of n‐butanol in the polymer matrix and zeolite channel, the 5% ZSM‐5‐PEBA membrane showed enhanced selectivity and flux. The effects of liquid temperature and concentration on separation performance were also investigated. All the composite membranes demonstrated increasing separation factor and permeation flux with increasing temperature and concentration. Incorporation of ZSM‐5 could decrease the activation energy of n‐butanol flux of the composite membrane. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
Dye‐affinity adsorption is increasingly used for protein separation. Hollow‐fibres have advantages as adsorbents in comparison to conventional bead supports because they are not compressible and can eliminate internal diffusion limitations. The aim of this study was to explore in detail the performance of polyamide hollow‐fibres to which Reactive Green HE‐4BD was attached for adsorption of lysozyme. The hollow‐fibre was characterized by scanning electron microscopy. These dye‐carrying hollow‐fibres (26.3 µmol g?1) were used in the lysozyme adsorption–elution studies. The effect of initial concentration of lysozyme and medium pH on the adsorption efficiency of dye‐attached hollow‐fibres was studied in a batch system. The non‐specific adsorption of lysozyme on the polyamide hollow‐fibres was 1.8 mg g?1. Reactive Green HE‐4BD attachment significantly increased the lysozyme adsorption up to 41.1 mg g?1. Langmuir adsorption model was found to be applicable in interpreting lead adsorption by Reactive Green HE‐4BD attached hollow fibres. Significant amount of the adsorbed lysozyme (up to 95%) was eluted in 1 h in the elution medium containing 1.0 M NaSCN at pH 8.0. In order to determine the effects of adsorption conditions on possible conformational changes of lysozyme structure, fluorescence spectrophotometry was employed. We concluded that polyamide dye‐affinity hollow‐fibres can be applied for lysozyme adsorption without causing any significant conformational changes. Repeated adsorption–elution processes showed that these dye‐attached hollow‐fibres are suitable for lysozyme adsorption. © 2001 Society of Chemical Industry  相似文献   

4.
An affinity dye ligand, Cibacron Blue F3GA, was covalently attached onto magnetic poly(2‐hydroxyethyl methacrylate) (mPHEMA) beads for human serum albumin (HSA) adsorption from both aqueous solutions and human plasma. The mPHEMA beads, in the size range of 80 to 120 µm, were prepared by a modified suspension technique. Cibacron Blue F3GA molecules were incorporated on to the mPHEMA beads. The maximum amount of Cibacron Blue F3GA attachment was obtained as 68.3 µmol g?1. HSA adsorption onto unmodified and Cibacron Blue F3GA‐attached mPHEMA beads was investigated batchwise. The non‐specific adsorption of HSA was very low (1.8 mg g?1). Cibacron Blue F3GA attachment onto the beads significantly increased the HSA adsorption (94.5 mg g?1). The maximum HSA adsorption was observed at pH 5.0. Higher HSA adsorption was observed from human plasma (138.3 mg HSA g?1). Desorption of HSA from Cibacron Blue F3GA‐attached mPHEMA beads was obtained by using 0.1 M Tris/HCl buffer containing 0.5 M NaSCN. High desorption ratios (up to 98% of the adsorbed HSA) were observed. It was possible to re‐use Cibacron Blue F3GA‐attached mPHEMA beads without any significant decreases in their adsorption capacities. Copyright © 2004 Society of Chemical Industry  相似文献   

5.
The epoxy‐group‐containing microspheres from cross‐linked glycidyl methacrylate and methyl methacrylate, poly(GMA–MMA), were prepared by suspension polymerisation. The epoxy groups of the poly(GMA–MMA) microspheres were used for grafting with an anionic polymer polyethylenimine (PEI) to prepare non‐specific affinity adsorbents (poly(GMA–MMA)–PEI) for bilirubin removal. The specificity of the poly(GMA–MMA)–PEI adsorbent to bilirubin was further increased by immobilization of human serum albumin (HSA) via adsorption onto PEI‐grafted poly(GMA–MMA) adsorbent. Various amounts of HSA were immobilized on the poly(GMA–MMA)–PEI adsorbent by changing the medium pH and initial HSA concentration. The maximum HSA content was obtained at 68.3 mg g?1 microspheres. The effects of pH, ionic strength, temperature and initial bilirubin concentration on the adsorption capacity of both adsorbents were investigated in a batch system. Separation of bilirubin from human serum was also investigated in a continuous‐flow system. The bilirubin adsorption on the poly(GMA–MMA)–PEI and poly(GMA–MMA)–PEI–HSA was not well described by the Langmuir model, but obeyed the Freundlich isotherm model. The poly(GMA–MMA)–PEI affinity microspheres are stable when subjected to sanitization with sodium hydroxide after repeated adsorption–desorption cycles. Copyright © 2004 Society of Chemical Industry  相似文献   

6.
pH and temperature dual‐sensitive protein imprinted microspheres with high absorption capacity have been successfully synthesized on the surface of SiO2 using chitosan grafted N‐isopropylacrylamide (CS‐g‐NIPAM) as the pH and temperature sensitive monomer, with acrylamide as comonomer, N,N′‐methylenebisacrylamide as the crosslinking agent and bovine serum albumin (BSA) as the template protein. The pH and temperature dual‐sensitivity was also investigated. The results showed that the adsorption capacity and imprinting factor improved slowly with increasing incubation pH from 4.6 to 7.0, and then decreased sharply in alkaline conditions due to the reduction of non‐specific binding from electrostatic and hydrogen bonding interactions. Fourier transform infrared spectroscopy, thermogravimetric analysis and transmission electron microscopy were used to characterize the polymers. The as‐prepared SiO2@BSA molecularly imprinted polymers were also found to have high adsorption capacity (119.88 mg g?1) within 2 h, an excellent imprinting factor (α = 2.25), specific selectivity and good reusability. © 2019 Society of Chemical Industry  相似文献   

7.
Wide‐angle X‐ray diffraction (WAXD) and variable temperature WAXD spectroscopy and Fourier‐transform infrared (FTIR) spectrometry were used to identify the γ‐crystalline form of nylon‐10,10 in the nanocomposite of nylon‐10,10 and montmorillonite. A new diffraction peak at 2θ = 22° was observed in the WAXD pattern of the nanocomposite as compared with nylon‐10,10, and the data of variable temperature WAXD indicated that it was the characteristic peak of γ‐crystalline form of nylon‐10,10. The amide VI band at 624 cm?1 was also observed in the FTIR spectrum of the nanocomposite, which is characteristic of γ‐crystalline nylon. In addition, the shoulder peak at 1553 cm?1 can be assigned to the amide II band of γ‐crystalline form of nylon‐10,10. Copyright © 2003 Society of Chemical Industry  相似文献   

8.
In this work, melt processable poly(acrylonitrile‐co‐methyl acrylate) [(P(AN‐MA)] was hydrolyzed first and then formed into microporous membrane via thermally induced phase separation. In order to optimize the hydrolysis condition and fabricate hydrophilic PAN‐based membranes, a series of hydrolysis experiments were performed to indicate the influence of hydrolysis temperature, alkaline species and time. The structure and properties of hydrolyzed P(AN‐MA) [H‐P(AN‐MA)] membranes were also investigated. It was found that with the increase of hydrolysis temperature, pure water flux (PWF) increased first and then decreased. When the hydrolysis temperature increased to 30 °C, the PWF of the H‐P(AN‐MA) membrane was up to the maximum of 6712.7 L/m2 h, which increased by 1661.6 L/m2 h, compared with the P(AN‐MA) membranes. When 1 wt % sodium dodecyl sulfate (SDS) was incorporated into the diluents, the PWF increased dramatically, especially in high hydrolysis temperature. When the hydrolysis temperature was up to 70 °C, the PWF of H‐P(AN‐MA) membranes containing 1 wt % SDS increased by 2.3 times compared to the sample without SDS under the same condition. With 2 wt % amino functionalized multi‐walled carbon nanotubes (MWCNTs‐NH2) employed as the additive, the tensile strength was up to 4.55 MPa. When 1 wt % SDS and 0.5 wt % MWCNTs‐NH2 were mixed together, the bovine serum albumin rejection increased from 31.2% to 40.9%. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46380.  相似文献   

9.
用于清除胆红素的壳聚糖膜的吸附性能研究   总被引:4,自引:6,他引:4  
采用溶出法,以硅胶粒子为成孔剂制备了壳聚糖微孔膜,并用环氧氯丙烷对其进行了交联处理。以含胆红素的磷酸盐缓冲液作为模拟血浆,通过静态和动态实验测定了胆红素在膜上的吸附性能,考察了膜交联处理、温度、离子强度、胆红素初始浓度、白蛋白等因素对吸附的影响。结果表明:胆红素在膜上的吸附平衡符合Freundlich方程;在较高的温度、较低的离子强度下胆红素的去除效果较好;未交联处理的膜对胆红素的去除率高达94%,经交联处理后去除率为84.6%;加入白蛋白后,去除率下降。与壳聚糖树脂吸附胆红素的方法相比,采用壳聚糖微孔膜法达到吸附平衡的时间短。  相似文献   

10.
A novel chelating resin with functional group containing S and N atoms was prepared using chloromethylated polystyrene and 2,5‐dimercapto‐1,3,4‐thiodiazole (also called bismuththiol I, BMT) as materials. Its structure was characterized by infrared spectra and elementary analysis. The results showed that the content of the functional group was 2.07 mmol BMT g?1 resin, 47% of which were in the form of monosubstitution (PS‐BMT‐1) and 53% in the form of double substitution (PS‐BMT‐2). The adsorption for mercury ion was investigated. The adsorption dynamics showed that the adsorption was controlled by liquid film diffusion. Increasing the temperature was beneficial to adsorption. The Langmuir model was much better than the Freundlich model to describe the isothermal process. The adsorption activation energy (Ea), ΔG, ΔH, and ΔS values calculated were 18.56 kJ·mol?1, ‐5.99 kJ·mol?1, 16.38 kJ·mol?1, and 37.36, J·mol?1·K?1, respectively. The chelating resin could be easily regenerated by 2% thiourea in 0.1 mol·L?1 HCl with higher effectiveness. Five adsorption–desorption cycles demonstrated that this resin was suitable for repeated use without considerable change in adsorption capacity. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1646–1652, 2004  相似文献   

11.
Clear blends of chitosan with poly(N‐vinyl‐2‐pyrrolidone) (PVP) made from aqueous solutions appear to be miscible from visual appearance. Infrared (IR) spectra used to investigate the carbonyl—hydroxyl hydrogen bonding in the blends indicated compatibility of two polymers on a molecular level. The IR spectra were also used to determine the interaction change accessing with increasing temperature and indicated that a significant conformational change occurred. On the other hand, the blend membranes were evaluated for separation of methanol from methyl tert‐butyl ether. The influences of the membrane and the feed compositions were investigated. Methanol preferentially permeates through all the tested membranes, and the partial flux of methanol significantly increase with the poly(N‐vinyl‐2‐pyrrolidone) content increasing. The temperature dependence of pervaporation performance indicated that a significant conformational change occurred with increasing temperature. Combined with the IR results, the pervaporation properties are in agreement with characteristics of interaction between chain–chain within the blend membranes. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1452–1458, 1999  相似文献   

12.
The ionic conductivity of Nafion® 1100 extruded membranes re‐cast from solutions of butan‐1‐ol and propan‐2‐ol is measured in 0.5 mol dm–3 H2SO4 at 295 K, using an immersed, four‐electrode d.c. technique. The general trend is an increasing conductivity for the thicker membranes. Materials which were solution‐cast from butan‐1‐ol yielded the highest conductivity while a series of membranes with lower conductivities (similar to those of an extruded Nafion® 1100 series of membranes) was found using propan‐2‐ol. The conductivity results indicate that membranes manufactured by extrusion and casting from various solvents might have different structures. Differences in the water content and conductivity of the membranes are considered to arise from the impact of processing conditions on the surface and bulk structure of the membranes.  相似文献   

13.
Polyurethanes are a class of polymers that have a wide range of applications in the medical field although their blood compatibility still needs improvement. In order to obtain medical purity, this study prepared membrane‐form polyurethanes from toluene 2,4‐diisocyanate (TDI) and poly(propylene ethylene glycol) without the addition of any ingredients such as solvents, catalysts, or chain extenders. The aim was to increase surface hydrophilicity and improve blood compatibility. Therefore, the prepared membranes were modified by treatment with oxygen or argon plasmas. Characterizations of the samples were achieved by contact‐angle and water‐uptake studies as well as from atomic force microscope (AFM) pictures. It was found that oxygen‐modified samples were more hydrophilic than argon‐modified samples. The AFM images showed that surface roughness increased with plasma treatment. The protein adsorption experiments carried out with single protein solutions demonstrated that the adsorption of bovine serum albumin and fibrinogen decreased drastically by increasing the applied power and exposure time of the glow discharge. A similar decrease in the adsorption of protein was also observed for human blood proteins. The alterations of the conformational structures of the adsorbed proteins were examined by fluorescence spectrophotometry. Similar spectra with the same maximum wavelength were observed for native and desorbed proteins. These results showed that no denaturation of the proteins occurred upon adsorption on the surfaces of the prepared membranes. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1322–1332, 2001  相似文献   

14.
We modified microporous polyamide hollow fibers by acid hydrolysis to amplify the reactive groups and subsequent binding of Cibacron Blue F3GA. Then, we loaded the Cibacron Blue F3GA‐attached hollow fibers with different metal ions (Cu2+, Ni2+, and Co2+) to form the metal chelates. We characterized the hollow fibers by scanning electron microscopy. The effect of pH and initial concentration of human serum albumin (HSA) on the adsorption of HSA to the metal‐chelated hollow fibers were examined in a batch system. Dye‐ and metal‐chelated hollow fibers had a higher HSA adsorption capacity and showed less nonspecific protein adsorption. The nonspecific adsorption of HSA onto the polyamide hollow fibers was 6.0 mg/g. Cibacron Blue F3GA immobilization onto the hollow fibers increased HSA adsorption up to 147 mg/g. Metal‐chelated hollow fibers showed further increases in the adsorption capacity. The maximum adsorption capacities of Co2+‐, Cu2+‐, and Ni2+‐chelated hollow fibers were 195, 226, and 289 mg/g, respectively. The recognition range of metal ions for HSA from human serum followed the order: Ni(II) > Cu(II) > Co(II). A higher HSA adsorption was observed from human serum (324 mg/g). A significant amount of the adsorbed HSA (up to 99%) was eluted for 1 h in the elution medium containing 1.0M sodium thiocyanide (NaSCN) at pH 8.0 and 25 mM ethylenediaminetetraacetic acid at pH 4.9. Repeated adsorption–desorption processes showed that these metal‐chelated polyamide hollow fibers were suitable for HSA adsorption. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3346–3354, 2002  相似文献   

15.
New types of composite anion‐exchange membranes were prepared by blending of suspension‐produced poly(vinyl chloride) (S‐PVC) and poly(styrene‐co‐butadiene), otherwise known as styrene–butadiene rubber (SBR), as binder, along with anion‐exchange resin powder to provide functional groups and activated carbon as inorganic filler additive. Also, an ultrasonic method was used to obtain better homogeneity. In solutions with mono‐ and divalent anions, the effect of activated carbon and sonication on the morphology, electrochemical properties and selectivity of these membranes was elucidated. For all solutions, ion‐exchange capacity, membrane potential, permselectivity, transport number, ionic permeability, flux and current efficiency of the prepared membranes initially increased on increasing the activated carbon concentration to 2 wt% in the casting solution and then began to decrease. Moreover, the electrical resistance and energy consumption of the membranes initially decreased on increasing the activated carbon loading to 2 wt% and then increased. S‐PVC‐blend‐SBR membranes with additive showed a decrease in water content and a slight decrease in oxidative stability. Also, these membranes showed good monovalent ion selectivity. Structural images of the prepared membranes obtained using scanning optical microscopy showed that sonication increased polymer‐particle interactions and promoted the compatibility of particles with binder. Copyright © 2010 Society of Chemical Industry  相似文献   

16.
Cross‐linked hydroxy terminated polybutadiene (HTPB)‐based polyurethaneurea (PU), HTPB‐divinyl benzene (DVB)‐PU, was synthesized by a three‐step polymerization process. It was first used as membrane material to separate p‐/o‐xylene mixtures by pervaporation (PV). The effects of the content of cross‐linker DVB, feed concentration, and operating temperature on the PV performance of HTPB‐DVB‐PU membranes were investigated. The membranes demonstrated p‐xylene permselectivity as well as high total flux. The introduction of DVB significantly enhanced the temperature resistance ability of the HTPB‐DVB‐PU membranes. With increasing DVB content, the separation factor increased while the total flux decreased a little. The highest separation factor reaches 2.01 and the total flux is 33 g/m2h with feed concentration of 10 wt % p‐xylene at 30°C. These PV performances with increasing DVB content were explained in terms of the view point of chemical compositions and physical structures of the HTPB‐DVB‐PU membranes. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
Composite membranes were synthesized with 2‐hydroxyethylmethacrylate and chitosan (pHEMA/chitosan) via an ultraviolet‐initiated photopolymerization technique in the presence of an initiator (α,α′‐azobisisobutyronitrile). The interpenetrating network (IPN) membranes were improved by the immobilization of dye molecules via hydroxyl and amino groups on the membrane surfaces from the IPNs. A triazidine dye (Procion Green H‐4G) was covalently immobilized as a ligand onto the IPN membranes. The protein showed various affinities to different chelated metal ions on the membrane surfaces that best matched its own distribution of functional sites, resulting in a distribution of binding energies. In support of this interpretation, two different metal ions, Zn(II) and Fe(III), were chelated with the immobilized dye molecules. The adsorption and binding characteristics of the different metal‐ion‐chelated dye‐immobilized IPN membranes for the lysozyme were investigated with aqueous solutions in magnetically stirred cells. The experimental data were analyzed with two adsorption kinetic models, pseudo‐first‐order and pseudo‐second‐order, to determine the best fit equation for the adsorption of lysozyme onto IPN membranes. The second‐order equation for the lysozyme–dye–metal‐chelated IPN membrane systems was the most appropriate equation for predicting the adsorption capacity for all the tested adsorbents. The reversible lysozyme adsorption on the dye‐immobilized and metal‐ion‐chelated membranes obeyed the Temkin isotherm. The lysozyme adsorption capacity of the pHEMA/chitosan dye, pHEMA/chitosan dye–Zn(II), and pHEMA/chitosan dye–Fe(III) membranes were 2.54, 2.85, and 3.64 mg cm?2, respectively. The nonspecific adsorption of the lysozyme on the plain pHEMA/chitosan membrane was about 0.18 mg cm?2. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1843–1853, 2003  相似文献   

18.
Novel self‐supported natural and synthetic polymer membranes of chitosan‐hydroxy ethyl cellulose‐montmorillonite (CS‐HEC‐MMT) and polyvinyl alcohol (PVA)‐polystyrene sulfonic acid (PSSA) are prepared by solution casting method followed by crosslinking. These membranes are employed for air humidification at varying temperatures between 30°C and 70°C and their performances are compared with commercial Nafion® membranes. High water fluxes with desired humidified‐air output have been achieved for CS‐HEC‐MMT and PVA‐PSSA hybrid membranes at air‐flow rates of 1–10 slpm. Variation in the air/water mixing ratio, dew point, and relative humidity that ultimately results in desired water flux with respect to air‐flow rates are also quantified for all the membranes. Water flux values for CS‐HEC‐MMT are less than those for Nafion® and PVA‐PSSA membranes, but the operational stability of CS‐HEC‐MMT membrane is higher than PVA‐PSSA and comparable with Nafion® both of which can operate up to 70°C at repetitive cycles of humidification. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
The kinetics of the thermally induced solid‐state polymerization (SSP) of nylon‐6 were examined in both a fixed‐bed reactor and a rotary reactor. Factors such as the regulator content, the reaction temperature and time, the particle size, the type and geometry of the nylon‐6 prepolymer, the nitrogen gas flow rate, the water content of the nitrogen gas flow, and the polymerization process were studied. The results showed that the regulator content, the reaction temperature and time, and the particle size were the primary factors, and that the others were negligible. Moreover, the SSP rate and number‐average molecular weight (Mn) increased with increasing reaction temperature and time and decreasing particle size. The SSP rate and Mn had maximum values with increasing regulator content in an experimental range of 0.03–0.07 wt %. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 616–621, 2002; DOI 10.1002/app.10341  相似文献   

20.
Sulfonated poly(amide‐imide) (SPAI) copolymer was synthesized, characterized, and blended into poly(ether sulfone) (PES)/dimethylacetamide casting solutions to prepare ultrafiltration membranes. Different weight ratios of the copolymer (0–10 wt %) were mixed in the PES casting solution. The analyses of contact angle and attenuated total reflection‐Fourier transform infrared spectra were used to study hydrophilicity and physicochemical properties of the membrane surface, respectively. The membranes were further characterized by scanning electron microscopy images, ultrafiltration performance, and fouling analyses. The outcomes showed that addition of the SPAI in the PES matrix improved considerably the membranes hydrophilicity. Moreover, with increasing SPAI concentration, the porosity, flux recovery ratio, and pure water permeability of the modified membranes were improved. The pure water flux was increased from 3.6 to 12.4 kg/m2 h by increasing 2 wt % SPAI. The antifouling property of the modified PES membranes against bovine serum albumin, tested by a dead‐end filtration setup revealed that bovine serum albumin rejection of the obtained membrane was also enhanced and the antifouling properties of the blending membranes were improved. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46477.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号