首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study is concerned with the integrated system of a robot and a machine tool. The major task of robot is loading the workpiece to the machine tool for contour cutting. An iterative learning control (ILC) algorithm is proposed to improve the accuracy of the finished product. The proposed ILC is to modify the input command of the next machining cycle for both robot and machine tool to iteratively enhance the output accuracy of the robot and machine tool. The modified command is computed based on the current tracking/contour error. For the ILC of the robot, tracking error is considered as the control objective to reduce the tracking error of motion path, in particular, the error at the endpoint. Meanwhile, for the ILC of the machine tool, contour error is considered as the control objective to improve the contouring accuracy, which determines the quality of machining. In view of the complicated contour error model, the equivalent contour error instead of the actual contour error is taken as the control objective in this study. One challenge for the integrated system is that there exists an initial state error for the machine tool dynamics, violating the basic assumption of ILC. It will be shown in this study that the effects of initial state error can be significantly reduced by the ILC of the robot. The proposed ILC algorithm is verified experimentally on an integrated system of commercial robot and machine tool. The experimental results show that the proposed ILC can achieve more than 90% of reduction on both the RMS tracking error of the robot and the RMS contour error of the machine tool within six learning iterations. The results clearly validate the effectiveness of the proposed ILC for the integrated system.  相似文献   

2.
《Advanced Robotics》2013,27(13-14):1817-1838
We propose a path-tracking algorithm that is developed using an iterative learning control (ILC) technique and use the algorithm to control an omni-directional mobile robot. The proposed algorithm can be categorized as an open–closed PD-type ILC; it generates robot velocity commands by a PD-type ILC update rule using both previous and current information. When applied to the omni-directional mobile robot, it can decrease position errors and track the desired trajectory. Under the general problem setting that includes a mobile robot, we show that the proposed algorithm guarantees that the system states, outputs and control inputs converge to within small error bounds around the desired ones even under state disturbances, measurement noises and initial state errors. By using simulation and experimental tests, we demonstrate that the proposed algorithm converges fast to the desired path, and results in small root-mean-square (r.m.s.) position error under various surface conditions. The proposed algorithm shows better path-tracking performance than the conventional PID algorithm and achieves faster convergence and lower r.m.s. error than the existing two ILC algorithms.  相似文献   

3.
极坐标下基于迭代学习的移动机器人轨迹跟踪控制   总被引:2,自引:0,他引:2  
为提高自主移动机器人对一类特殊轨迹的重复跟踪能力,在极坐标下建立了3轮全向移动机器人的运动学模型,结合离散时域下对轨迹跟踪问题的描述方法,采用开闭环P型迭代学习控制算法,并在给定条件下证明了其收敛性,随着迭代次数的增加,该算法能够有效改善动态不确定环境中系统的稳定性与收敛的快速性。通过将仿真结果作用于实际动态系统的初始控制输入,从而在实际环境下能以较少的迭代过程来获取控制律。实验结果表明,在仿真环境下机器人可以较好地跟踪玫瑰曲线,在实际机器人测试中,机器人能够较好地跟踪期望轨迹,从而证实了该方法对提高自主移动机器人轨迹跟踪能力的可行性与有效性。  相似文献   

4.
基于迭代学习的农业车辆路径跟踪控制   总被引:4,自引:0,他引:4  
由于农作物的播种、收获、除草和农药化肥喷洒具有周期性的特点,农业车辆在执行农田作业时具有较强的重复性. 基于迭代学习控制(Iterative learning control,ILC)方法研究农业车辆的路径跟踪问题,建立了农业车辆的两轮移动机器人运动学模型,设计了车辆路径跟踪的迭代学习控制算法,并基于压缩 映射方法理论上证明了算法的收敛性. 研究表明,迭代学习控制可有效利用农业车辆运行的重复信息,实现车辆期望路径有限区间内的高精度完全跟踪控制. 仿真示例验证了本文方法的有效性.  相似文献   

5.
为提高移动机器人对特定轨迹的重复跟踪能力,提出了采用开闭环PD型迭代学习控制算法对移动机器人进行轨迹跟踪控制的方法。建立了包含外界干扰的非完整约束条件下的轮式移动机器人运动学模型,给出了系统的控制算法和控制结构。仿真结果表明,采用开闭环PD型迭代学习控制算法对轨迹跟踪是可行有效的,收敛速度优于其他迭代学习算法。  相似文献   

6.
Real‐life work operations of industrial robotic manipulators are performed within a constrained state space. Such operations most often require accurate planning and tracking a desired trajectory, where all the characteristics of the dynamic model are taken into consideration. This paper presents a general method and an efficient computational procedure for path planning with respect to state space constraints. Given a dynamic model of a robotic manipulator, the proposed solution takes into consideration the influence of all imprecisely measured model parameters, making use of iterative learning control (ILC). A major advantage of this solution is that it resolves the well‐known problem of interrupting the learning procedure due to a high transient tracking error or when the desired trajectory is planned closely to the state space boundaries. The numerical procedure elaborated here computes the robot arm motion to accurately track a desired trajectory in a constrained state space taking into consideration all the dynamic characteristics that influence the motion. Simulation results with a typical industrial robot arm demonstrate the robustness of the numerical procedure. In particular, the results extend the applicability of ILC in robot motion control and provide a means for improving the overall trajectory tracking performance of most robotic systems.  相似文献   

7.
This work focuses on the iterative learning control (ILC) for linear discrete‐time systems with unknown initial state and disturbances. First, multiple high‐order internal models (HOIMs) are introduced for the reference, initial state, and disturbances. Both the initial state and disturbance consist of two components, one strictly satisfies HOIM and the other is random bounded. Then, an ILC scheme is constructed according to an augmented HOIM that is the aggregation of all HOIMs. For all known HOIMs, an ILC design criterion is introduced to achieve satisfactory tracking performance based on the 2‐D theory. Next, the case with unknown HOIMs is discussed, where a time‐frequency‐analysis (TFA)‐based ILC algorithm is proposed. In this situation, it is shown that the tracking error inherits the unknown augmented HOIM that is an aggregation of all unknown HOIMs. Then, a TFA‐based method, e.g., the short‐time Fourier transformation (STFT), is employed to identify the unknown augmented HOIM, where the STFT could ignore the effect of the random bounded initial state and disturbances. A new ILC law is designed for the identified unknown augmented HOIM, which has the ability to reject the unknown the initial state and disturbances that strictly satisfy HOIMs. Finally, a gantry robot system with iteration‐invariant or slowly‐varying frequencies is given to illustrate the efficiency of the proposed TFA‐based ILC algorithm.  相似文献   

8.
ABSTRACT

This article designs a novel adaptive trajectory tracking controller for nonholonomic wheeled mobile robot under kinematic and dynamic uncertainties. A new velocity controller, in which kinematic parameter is estimated, produces velocity command of the robot. The designed adaptive sliding mode dynamic controller incorporates an estimator term to compensate for the external disturbances and dynamic uncertainties and a feedback term to improve the closed-loop stability and account for the estimation error of external disturbances. The system stability is analyzed using Lyapunov theory. Computer simulations affirm the robustness of the designed control scheme.  相似文献   

9.
Estimation-based iterative learning control (ILC) is applied to a parallel kinematic manipulator known as the Gantry–Tau parallel robot. The system represents a control problem where measurements of the controlled variables are not available. The main idea is to use estimates of the controlled variables in the ILC algorithm, and in the paper this approach is evaluated experimentally on the Gantry–Tau robot. The experimental results show that an ILC algorithm using estimates of the tool position gives a considerable improvement of the control performance. The tool position estimate is obtained by fusing measurements of the actuator angular positions with measurements of the tool path acceleration using a complementary filter.  相似文献   

10.
针对光伏阵列清洁机器人清洁作业过程中存在路径跟踪精度低与外界不确定干扰等问题,提出了一种改进型自抗扰控制策略来控制驱动单元模型,实现驱动单元角速度(力矩)的高鲁棒性控制,从而提高了机器人的路径跟踪精度.通过分析机器人的运动状态,得到清洁机器人实际运动位姿与期望运动位姿之间的误差.由于外界环境以及其他不确定因素的干扰,通过建立清洁机器人移动底盘带不确定干扰因素的动力学控制模型,在传统自抗扰控制器的基础上通过改进fal函数,提出了一种运动学与动力学内外嵌套的改进型自抗扰策略.改进型扩张状态观测器来实时观测并补偿不确定干扰因素,从而实现清洁机器人高精度跟踪作业目标路径.通过多种目标路径的跟踪仿真实验,最终都表现出了较好的跟踪结果.证明了本文所设计的基于改进型自抗扰控制的光伏阵列清洁机器人路径跟踪控制算法的优越性与有效性,提高了光伏阵列清洁机器人的清洁作业路径跟踪精度.  相似文献   

11.
A novel control technique is proposed by combining iterative learning control (ILC) and model predictive control (MPC) with updating-reference trajectory for point-to-point tracking problem of batch process. In this paper, a batch-to-batch updating-reference trajectory, which passes through the desired points, is firstly designed as the tracking trajectory within a batch. The updating control law consists of P-type ILC part and MPC part, in which P-type ILC part can improve the performance by learning from previous executions and MPC part is used to suppress the model perturbations and external disturbances. Convergence properties of the integrated predictive iterative learning control (IPILC) are analyzed theoretically, and the sufficient convergence conditions of output tracking error are also derived for a class of linear systems. Comparing with other point-to-point tracking control algorithms, the proposed algorithm can perform better in robustness. Furthermore, updating-reference relaxes the constraints for system outputs, and it may lead to faster convergence and more extensive range of application than those of fixed-reference control algorithms. Simulation results on typical systems show the effectiveness of the proposed algorithm.  相似文献   

12.
针对多机器人系统中机器人运动控制的要求和特点,提出了基于Server+IPC+PLC架构的移动机器人运动控制系统方案,解决了系统互连中存在的一些问题。建立移动机器人的运动学模型,设计基于分解运动速度控制的机器人运动轨迹跟踪算法,并通过仿真研究验证算法的有效性。  相似文献   

13.
In this paper, a high‐order internal model (HOIM)‐based iterative learning control (ILC) scheme is proposed for discrete‐time nonlinear systems to tackle the tracking problem under iteration‐varying desired trajectories. By incorporating the HOIM that is utilized to describe the variation of desired trajectories in the iteration domain into the ILC design, it is shown that the system output can converge to the desired trajectory along the iteration axis within arbitrarily small error. Furthermore, the learning property in the presence of state disturbances and output noise is discussed under HOIM‐based ILC with an integrator in the iteration axis. Two simulation examples are given to demonstrate the effectiveness of the proposed control method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
本文提出一种自适应和神经动力学相结合的轮式移动机器人路径跟踪控制方法.首先,设计运动学控制器用来获得机器人期望速度;其次,考虑机器人动力学模型参数的不确定性,利用模型参考自适应方法来设计动力学控制规律,使得机器人实际速度渐近逼近期望值;再次,为克服速度和力矩的跳变,加入神经动力学模型对控制器进行优化,并且通过Lypunov理论来证明整个控制系统的稳定性;最后仿真结果表明该控制方法的有效性.  相似文献   

15.
A new practical iterative learning control (ILC) updating law is proposed to improve the path following accuracy for an omni‐directional autonomous mobile robot. The ILC scheme is applied as a feedforward controller to the existing feedback controller. By using the local symmetrical double‐integral of the feedback control signal of the previous iteration, the ILC updating law takes a simple form with only two design parameters: the learning gain and the range of local integration. Convergence analysis is presented together with a design procedure. Simulation results on a difficult maneuver are presented to illustrate the effectiveness of the proposed simple and yet practical scheme. The simulation is based on the model of a novel robotic platform, the Utah State University (USU) Omni‐Directional Vehicle (ODV), which uses multiple “smart wheels,” whose speed and direction can be independently controlled through dedicated processors for each wheel.  相似文献   

16.
In this paper, a control scheme that combines a kinematic controller and a sliding mode dynamic controller with external disturbances is proposed for an automatic guided vehicle to track a desired trajectory with a specified constant velocity. It provides a method of taking into account specific mobile robot dynamics to convert desired velocity control inputs into torques for the actual mobile robot. First, velocity control inputs are designed for the kinematic controller to make the tracking error vector asymptotically stable. Then, a sliding mode dynamic controller is designed such that the mobile robot’s velocities converge to the velocity control inputs. The control law is obtained based on the backstepping technique. System stability is proved using the Lyapunov stability theory. In addition, a scheme for measuring the errors using a USB camera is described. The simulation and experimental results are presented to illustrate the effectiveness of the proposed controller.  相似文献   

17.
机器人轨迹节点跟踪比较难,导致机器人实际轨迹偏离期望轨迹,所以设计基于视觉图像的全向移动机器人轨迹跟踪控制方法;构建全向移动机器人的运动学数学模型,以此确定机器人移动轨迹数学模型;以移动轨迹数学模型为基础,按照视觉图像划分标准对全向移动机器人运动图像的分割,通过分离目标节点的方式提取运动学特征参量,完成机器人轨迹节点跟踪处理;结合节点跟踪处理结果,将运动学不等式与误差向量作为机器人轨迹跟踪控制的约束条件,利用滑模变结构搭建轨迹跟踪控制模型,实现全向移动机器人轨迹跟踪控制;对比实验结果表明,所设计的方法应用后,全向移动机器人角速度曲线、线速度曲线与期望运动轨迹曲线之间的贴合程度均超过90%,满足全向移动机器人轨迹跟踪控制要求。  相似文献   

18.
The purpose of this paper is to propose a compound cosine function neural network with continuous learning algorithm for the velocity and orientation angle tracking control of a nonholonomic mobile robot with nonlinear disturbances. Herein, two neural network (NN) controllers embedded in the closed-loop control system have the simple continuous learning and rapid convergence capability without the dynamics information of the mobile robot to realize the adaptive control of the mobile robot. The neuron function of the hidden layer in the three-layer feed-forward network structure is on the basis of combining a cosine function with a unipolar sigmoid function. The developed neural network controllers have simple algorithm and fast learning convergence because the weight values are only adjusted between the nodes in hidden layer and the output nodes, while the weight values between the input layer and the hidden layer are one, i.e. constant, without the weight adjustment. Therefore, the main advantages of this control system are the real-time control capability and the robustness by use of the proposed neural network controllers for a nonholonomic mobile robot with nonlinear disturbances. Through simulation experiments applied to the nonholonomic mobile robot with the nonlinear disturbances which are considered as dynamics uncertainty and external disturbances, the simulation results show that the proposed NN control system of nonholonomic mobile robots has real-time control capability, better robustness and higher control precision. The compound cosine function neural network provides us with a new way to solve tracking control problems for mobile robots.  相似文献   

19.
带滚动约束轮移式机器人动态规划的研究   总被引:4,自引:0,他引:4  
根据轮移式机器人的运动学模型,研究受到滚动约束轮移式机器人在动态环境中的运动规划问题.将快速随机搜索树算法与优化方法相结合,实现了一种新的算法,规划出既可避障又可满足机器人滚动约束的运动.将该算法运用到动态环境下机器人的运动规划中,并通过仿真表明该算法能较好地引导机器人在动态环境中实现满足滚动约束的避障路径.  相似文献   

20.
In order to avoid wheel slippage or mechanical damage during the mobile robot navigation, it is necessary tosmoothly change driving velocity or direction of the mobile robot. This means that dynamic constraints of the mobile robotshould be considered in the design of path tracking algorithm. In the study, a path tracking problem is formulated asfollowing a virtual target vehicle which is assumed to move exactly along the path with specified velocity. The drivingvelocity control law is designed basing on bang-bang control considering the acceleration bounds of driving wheels. Thesteering control law is designed by combining the bang-bang control with an intermediate path called the landing curve whichguides the robot to smoothly land on the virtual target's tangential line. The curvature and convergence analyses providesufficient stability conditions for the proposed path tracking controller. A series of path tracking simulations and experimentsconducted for a two-wheel driven mobile robot show the validity of the proposed algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号