首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 766 毫秒
1.
This paper considers the problem of position control of planar robot manipulators via visual servoing in the presence of uncertainty associated with the robot mechanical dynamics and the camera system for both fixed‐camera and camera‐in‐hand configurations. Specifically, we first design a robust controller that compensates for uncertainty throughout the whole robot‐camera system and ensures global uniformly ultimately bounded position tracking for the fixed‐camera configuration. Under the same class of uncertainty, we then develop a setpoint controller for the camera‐in‐hand configuration that achieves global uniformly ultimately bounded regulation. Experimental results illustrating the performance of both controllers are also included. © 2003 Wiley Periodicals, Inc.  相似文献   

2.
This paper considers the problem of position/orientation tracking control of wheeled mobile robots via visual servoing in the presence of parametric uncertainty associated with the mechanical dynamics and the camera system. Specifically, we design an adaptive controller that compensates for uncertain camera and mechanical parameters and ensures global asymptotic position/orientation tracking. Simulation and experimental results are included to illustrate the performance of the control law.  相似文献   

3.
This paper presents the design of a differentiable, kinematic control law that achieves global asymptotic tracking. In addition, we also illustrate how the proposed kinematic controller provides global exponential tracking provided the reference trajectory satisfies a mild persistency of excitation (PE) condition. We also illustrate how the proposed kinematic controller can be slightly modified to provide for global asymptotic regulation of both the position and orientation of the mobile robot. Finally, we embed the differentiable kinematic controller inside of an adaptive controller that fosters global asymptotic tracking despite parametric uncertainty associated with the dynamic model. Experimental results are also provided to illustrate the performance of the proposed adaptive tracking controller.  相似文献   

4.
移动机器人自适应视觉伺服镇定控制   总被引:2,自引:0,他引:2  
对有单目视觉的移动机器人系统,提出了一种自适应视觉伺服镇定控制算法;在缺乏深度信息传感器并且摄像机外参数未知的情况下,该算法利用视觉反馈实现了移动机器人位置和姿态的渐近稳定.由于机器人坐标系与摄像机坐标系之间的平移外参数(手眼参数)是未知的,本文利用静态特征点的位姿变化特性,建立移动机器人在摄像机坐标系下的运动学模型.然后,利用单应矩阵分解的方法得到了可测的角度误差信号,并结合2维图像误差信号,通过一组坐标变换,得到了系统的开环误差方程.在此基础之上,基于Lyapunov稳定性理论设计了一种自适应镇定控制算法.理论分析、仿真与实验结果均证明了本文所设计的单目视觉控制器在摄像机外参数未知的情况下,可以使移动机器人渐近稳定到期望的位姿.  相似文献   

5.
杨芳  王朝立 《自动化学报》2011,37(7):857-864
研究了带有固定在天花板上的摄像机系统的非完整动态移动机器人的镇定问题. 首先, 利用针孔摄像机模型引入了基于摄像机目标的视觉伺服运动学模型,并针对该运动学模型给出了一个运动学镇定控制器. 然后,在摄像机参数不确定的情形下设计了一个自适应滑模控制器实现了不确定动态移动机器人的镇定. 提出的控制器不仅对结构不确定性如质量变化, 而且对无结构不确定性如外部扰动都具有鲁棒性. 通过Lyapunov方法严格证明了提出的控制系统的稳定性和估计参数的有界性. 仿真结果证实了控制律的有效性.  相似文献   

6.
Two important properties of industrial tasks performed by robot manipulators, namely, periodicity (i.e., repetitive nature) of the task and the need for the task to be performed by the end‐effector, motivated this work. Not being able to utilize the robot manipulator dynamics due to uncertainties complicated the control design. In a seemingly novel departure from the existing works in the literature, the tracking problem is formulated in the task space and the control input torque is aimed to decrease the task space tracking error directly without making use of inverse kinematics at the position level. A repetitive learning controller is designed which “learns” the overall uncertainties in the robot manipulator dynamics. The stability of the closed‐loop system and asymptotic end‐effector tracking of a periodic desired trajectory are guaranteed via Lyapunov based analysis methods. Experiments performed on an in‐house developed robot manipulator are presented to illustrate the performance and viability of the proposed controller.  相似文献   

7.
In this paper, the mapping between the desired camera feature vector and the desired camera pose (i.e., the position and orientation) is investigated to develop a measurable image Jacobian-like matrix. An image-space path planner is then proposed to generate a desired image trajectory based on this measurable image Jacobian-like matrix and an image-space navigation function (NF) (i.e., a special potential field function) while satisfying rigid body constraints. An adaptive, homography-based visual servo tracking controller is then developed to navigate the position and orientation of a camera held by the end-effector of a robot manipulator to a goal position and orientation along the desired image-space trajectory while ensuring the target points remain visible (i.e., the target points avoid self-occlusion and remain in the field-of-view (FOV)) under certain technical restrictions. Due to the inherent nonlinear nature of the problem and the lack of depth information from a monocular system, a Lyapunov-based analysis is used to analyze the path planner and the adaptive controller. Simulation results are provided to illustrate the performance of the proposed approach.  相似文献   

8.
Visual servo control systems use information from images along with knowledge of the optic parameters (i.e. camera calibration) to position the camera relative to some viewed object. If there are inaccuracies in the camera calibration, then performance degradation and potentially unpredictable response from the visual servo control system may occur. Motivated by the desire to incorporate robustness to the camera calibration, different control methods have been developed. Previous adaptive/robust controllers (especially for six degree‐of‐freedom camera motion) rely heavily on properties of the rotation parameterization to formulate state estimates and a measurable closed‐loop error system. All of these results are based on the singular axis–angle parameterization. Motivated by the desire to express the rotation by a non‐singular parameterization, efforts in this paper address the question: Can state estimates and a measurable closed‐loop error system be crafted in terms of the quaternion parameterization when the camera calibration parameters are unknown? To answer this question, a contribution of this paper is the development of a robust controller and closed‐loop error system based on a new quaternion‐based estimate of the rotation error. A Lyapunov‐based analysis is provided which indicates that the controller yields asymptotic regulation of the rotation and translation error signals given a sufficient approximate of the camera calibration parameters. Simulation results are provided that illustrate the performance of the controller for a range of calibration uncertainty. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
This paper studies the resilient (non‐fragile) H∞ output‐feedback control design for discrete‐time uncertain linear systems with controller uncertainty. The design considers parametric norm‐bounded uncertainty in all state‐space matrices of the system, output and controller equations. The paper shows that the resilient H∞ output‐feedback control problem is equivalent to a scaled H∞ output‐feedback control problem of an auxiliary system without any system or controller uncertainty. Using the existing optimal H∞ design to solve the auxiliary system, the design guarantees that the resultant closed‐loop systems are quadratically stable with disturbance attenuation γ for all admissible system and controller uncertainties. A numerical example is given to illustrate the design method and its benefits.  相似文献   

10.
Homography-based visual servo regulation of mobile robots.   总被引:2,自引:0,他引:2  
A monocular camera-based vision system attached to a mobile robot (i.e., the camera-in-hand configuration) is considered in this paper. By comparing corresponding target points of an object from two different camera images, geometric relationships are exploited to derive a transformation that relates the actual position and orientation of the mobile robot to a reference position and orientation. This transformation is used to synthesize a rotation and translation error system from the current position and orientation to the fixed reference position and orientation. Lyapunov-based techniques are used to construct an adaptive estimate to compensate for a constant, unmeasurable depth parameter, and to prove asymptotic regulation of the mobile robot. The contribution of this paper is that Lyapunov techniques are exploited to craft an adaptive controller that enables mobile robot position and orientation regulation despite the lack of an object model and the lack of depth information. Experimental results are provided to illustrate the performance of the controller.  相似文献   

11.
Most industrial manipulators operate from a fixed base. Hence, there are no disturbances from the environment to alter the position of the end‐effector. On the other hand, manipulators that are mounted on mobile platforms are subject to disturbances emerging from unwanted motion at the base. Similarly, manipulators that perform delicate operations in space while on board in‐orbit spacecraft experience disturbances. This article describes the design and implementation of a disturbance rejection controller for a 6 degree‐of‐freedom (DOF) programable universal manipulator for assembly (PUMA) manipulator mounted on a 3‐DOF platform. A control algorithm is designed to track the desired position and attitude of the end‐effector in inertial space, subject to unknown disturbances in the platform axes. Experimental results are presented for step, sinusoidal, and random disturbances in the platform rotational axis and in the neighborhood of kinematic singularities. ©1999 John Wiley & Sons, Inc.  相似文献   

12.
We present an adaptive, partial-state feedback, link position tracking controller for robot manipulators driven by induction motors. The proposed controller compensates for parametric uncertainty in the mechanical subsystem while yielding global asymptotic link position tracking. The proposed controller does not require measurement of rotor flux; furthermore, the controller does not exhibit any singularities. Preliminary experimental and simulation results are provided to illustrate the effectiveness of the proposed controller.  相似文献   

13.
This work addresses the problem of controlling a rigid arm (one degree of freedom robot manipulator) directly driven by an induction motor. A Lyapunov-based adaptive nonlinear controller is designed. The developed controller compensates for parametric uncertainty associated with the resistance of the rotor windings and it is capable to track asymptotically a trajectory for an angular position keeping all the internal signals bounded and guarantees the asymptotical stability of the system. Simulations are presented to illustrate the performance of this controller.  相似文献   

14.
This paper describes a camera position control with aerial manipulator for visual test of bridge inspection. Our developed unmanned aerial vehicle (UAV) has three‐degree‐of‐freedom (3‐DoF) manipulator on its top to execute visual or hammering test of the inspection. This paper focuses on the visual test. A camera was implemented at the end of the manipulator to acquire images of the narrow space of the bridge such as bearings, which the conventional UAV without the camera‐attached manipulators at its top cannot achieve the fine visual test. For the visual test, it is desirable that the camera is above the body with enough distance between the camera and the body. As obvious, the camera position in the inertial coordinate system is effected by the movement of the body. Therefore we implement the camera position control compensating the body movement into the UAV. As a result of an experiment, it is assessed that the proposed control reduces the position error of the camera comparing the one of the body. The mean position error of the camera is 0.039 m that is 51.4% of the one of the body. Our world‐first study enables to acquire the image of the bearing of the bridge by a camera mounted at the end effector of aerial manipulator fixed on UAV.  相似文献   

15.
空间绳系机器人目标抓捕鲁棒自适应控制器设计   总被引:1,自引:0,他引:1  
针对空间绳系机器人(Tethered space robot,TSR)目标抓捕过程中的稳定控制问题,建立空间绳系机器人系统模型,根据阻抗控制原理,设计基于位置的阻抗控制方法;针对空间绳系机器人系统的模型不确定性问题,利用神经网络对不确定性进行估计补偿,设计鲁棒项对空间系绳干扰和神经网络估计误差的影响进行抑制,在此基础上设计空间绳系机器人目标抓捕鲁棒自适应稳定控制器,并进行稳定性证明.最后对设计的控制器进行仿真验证.作为对比,对无鲁棒项自适应的稳定控制器进行仿真.仿真结果表明,设计的基于阻抗控制的鲁棒自适应控制可以实现对空间绳系机器人目标抓捕过程中的稳定控制,与无鲁棒项自适应的稳定控制器仿真结果相比,本文采用的鲁棒自适应控制方法可以有效地对不确定性进行补偿,控制过程中超调量更小,收敛时间更短,并且控制精度更高.  相似文献   

16.
An algorithm is presented for using a robot system with a single camera to position in threedimensional space a slender object for insertion into a hole; for example, an electrical pin-type termination into a connector hole. The algorithm relies on a control-configured end effector to achieve the required horizontal translations and rotational motion, and it does not require camera calibration. A force sensor in each fingertip is integrated with the vision system to allow the robot to teach itself new reference points when different connectors and pins are used. Variability in the grasped orientation and position of the pin can be accommodated with the sensor system. Performance tests show that the system is feasible. More work is needed to determine more precisely the effects of lighting levels and lighting direction.  相似文献   

17.
This paper deals with the problem of fault‐tolerant control (FTC) for a class of nonlinear uncertain systems against actuator faults using adaptive logic‐based switching control method. The uncertainties under consideration are assumed to be dominated by a bounding system which is linear in growth in the unmeasurable states but can be a continuous function of the system output, with unknown growth rates. Several types of common actuator faults, e.g., bias, loss‐of‐effectiveness, stuck and hard‐over faults are integrated by a unified fault model. By utilizing a novel adaptive logic‐based switching control scheme, the actuator faults can be detected and automatically accommodated by switching from the stuck actuator to the healthy or even partly losing‐effectiveness one with bias, in the presence of large parametric uncertainty. In particular, two switching logics for updating the gain in the output feedback controllers are designed to ensure the global stability of the nominal (fault‐free) system and the boundedness of all closed‐loop signals of the faulty system, respectively. Two simulation examples of an aircraft wing model and a single‐link flexible‐joint robot are given to show the effectiveness of the proposed FTC controller. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
An adaptive partial state-feedback controller is designed for rigid-link electrically driven (RLED) robot manipulators. The controller is based on structural knowledge of the electromechanical dynamics of the RLED robot and measurements of link position and electrical winding current in each of the brushed DC link actuators. The proposed controller is designed to adapt for parametric uncertainty in the electromechanical dynamics while utilizing a dynamic filter to generate link velocity tracking error information. The controller, adaptation laws, and the pseudovelocity filter are designed via a Lyapunov-like approach, the benefit of which is that at the end of the design procedure the controller can be mathematically shown to produce semiglobal asymptotic link position tracking. The basic design approach can be extended to many types of multiphase motors  相似文献   

19.
针对人机协作中人与机器人共享工作空间时的安全问题,设计了一套人机协作视觉手部保护系统,并搭建相应的验证系统。该系统采用深度学习目标检测算法结合双目视觉技术实现对操作人员手部的识别与定位,同时利用手眼标定将视觉定位后的手部坐标转换到机器人基座坐标系下,通过计算操作人员手部与机器人末端执行器之间的距离,机器人自主执行减速、急停等安全策略。经实验验证:当操作人员在机器人工作空间作业时,通过检测手-末端相对位置关系,可以有效避免人机协作过程中机器人末端执行器与手部发生碰撞,达到了保护操作人员安全的目的。  相似文献   

20.
This paper addresses the control issue for cooperative visual servoing manipulators on strongly connected graph with communication delays, in which case that the uncertain robot dynamics and kinematics, uncalibrated camera model, and actuator constraint are simultaneously considered. An adaptive cooperative image‐based approach is established to overcome the control difficulty arising from nonlinear coupling between visual model and robot agents. To estimate the coupled camera‐robot parameters, a novel adaptive strategy is developed and its superiority mainly lies in the containment of both individual image‐space errors and the synchronous errors among networked robots; thus, the cooperative performance is significantly strengthened. Moreover, the proposed cooperative controller with a Nussbaum‐type gain is implemented to both globally stabilize the closed‐loop systems and realize the synchronization control objective under the existence of unknown and time‐varying actuator constraint. Finally, simulations are carried out to validate the developed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号