首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 501 毫秒
1.
The relation is investigated between capital costs and thermodynamic losses for devices in modern coal-fired, oil-fired and nuclear electrical generating stations. Thermodynamic loss rate-to-capital cost ratios are used to show that, for station devices and the overall station, a systematic correlation appears to exist between capital cost and exergy loss (total or internal), but not between capital cost and energy loss or external exergy loss. The possible existence is indicated of a correlation between the mean thermodynamic loss rate-to-capital cost ratios for all of the devices in a station and the ratios for the overall station, when the ratio is based on total or internal exergy losses. This correlation may imply that devices in successful electrical generating stations are configured so as to achieve an overall optimal design, by appropriately balancing the thermodynamic (exergy-based) and economic characteristics of the overall station and its devices. The results may (i) provide useful insights into the relations between thermodynamics and economics, both in general and for electrical generating stations, (ii) help demonstrate the merits of second-law analysis, and (iii) extend throughout the electrical utility sector.  相似文献   

2.
In a previous companion article, we pointed out that inter-technology synergies will become a generic feature of coming hydrogen age systems. These synergies will develop between sources, currencies and technologies. Unfortunately, today's optimization methodologies, based on energy rather than exergy optics, are often a misleading basis for optimization. To illustrate how the energy and exergy optics give quite startlingly different perceptions, this article uses both approaches to examine a range of technologies from civilization's energy systems, including hydroelectric generating stations at Niagara Falls, a coal-fired electricity generating station and home heating systems. Some observations are provided on how the results apply to fuel cells, which can be used for electricity generation or to cogenerate electricity and heat. The main objectives of this work are to understand better the nature of thermodynamic efficiencies and losses, to see clearly where losses should be attributed, and to more accurately identify how to improve efficiencies.  相似文献   

3.
M.A. Rosen 《Energy》1996,21(12):1079-1094
The results are reported of comparisons based on energy and exergy analyses of a wide range of production processes for hydrogen and hydrogen-derived fuels (HDFs). A commercial process-simulation computer code, previously enhanced by the author for exergy analysis, is used in the analyses. Depending on the process and the efficiency definition used, overall efficiencies are determined to range widely, from 21 to 92% for energy efficiencies and from 19 to 83% for exergy efficiencies. The losses for all processes are found to exhibit many common factors. Energy losses associated with emissions account for 100% of the total energy losses, while exergy losses associated with emissions account for 4 to 11% of the total exergy losses. The remaining exergy losses are associated with internal consumptions. It is anticipated that the results will prove useful to those involved in the improvement of existing and design of future production processes for hydrogen and HDFs.  相似文献   

4.
This study deals with an energy and exergy analysis of Salihli geothermal district heating system (SGDHS) in Manisa, Turkey. In the analysis, actual system data are used to assess the district heating system performance, energy and exergy efficiencies, specific exergy index, exergetic improvement potential and exergy losses. Energy and exergy losses throughout the SGDHS are quantified and illustrated in the flow diagram. The exergy losses in the system, particularly due to the fluid flow, take place in the pumps and the heat exchanger, as well as the exergy losses of the thermal water (e.g. geothermal fluid) and the natural direct discharge of the system. As a result, the total exergy losses account for 2.22, 17.88 and 20.44%, respectively, of the total exergy input to the entire SGDHS. The overall energy and exergy efficiencies of the SGDHS components are also studied to evaluate their individual performances and determined to be 55.5 and 59.4%, respectively. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
The exhaust gas from an internal combustion engine carries away about 30% of the heat of combustion. The energy available in the exit stream of many energy conversion devices goes as waste. The major technical constraint that prevents successful implementation of waste heat recovery is due to intermittent and time mismatched demand for and availability of energy. The present work deals with the use of exergy as an efficient tool to measure the quantity and quality of energy extracted from a diesel engine and stored in a combined sensible and latent heat storage system. This analysis is utilized to identify the sources of losses in useful energy within the components of the system considered, and provides a more realistic and meaningful assessment than the conventional energy analysis. The energy and exergy balance for the overall system is quantified and illustrated using energy and exergy flow diagrams. In order to study the discharge process in a thermal storage system, an illustrative example with two different cases is considered and analyzed, to quantify the destruction of exergy associated with the discharging process. The need for promoting exergy analysis through policy decision in the context of energy and environment crisis is also emphasized.  相似文献   

6.
Efficiencies, based on energy and exergy, are comparatively assessed for a wide range of hydrogen production processes, including processes which are
  • •• hydrocarbon-based (steam-methane reforming and coal gasification),
  • •• non-hydrocarbon-based (water electrolysis and thermochemical water decomposition), and
  • •• integrated (steam-methane reforming linked to the non-hydrocarbon-based processes).
A process simulation and analysis computer code is used throughout. Overall efficiencies, based on primary resource inputs, are determined to range widely, from 21% to 86% for energy efficiencies, and from 19% to 78% for exergy efficiencies. Reductions in efficiencies from 100% are found to be attributable only to emissions for energy analysis, and mainly to internal consumptions for exergy analysis. Exergy losses associated with emissions account for a small portion of the total exergy losses.  相似文献   

7.
An exergy analysis was performed considering the combustion of methane and agro-industrial residues produced in Portugal (forest residues and vines pruning). Regarding that the irreversibilities of a thermodynamic process are path dependent, the combustion process was considering as resulting from different hypothetical paths each one characterized by four main sub-processes: reactant mixing, fuel oxidation, internal thermal energy exchange (heat transfer), and product mixing. The exergetic efficiency was computed using a zero dimensional model developed by using a Visual Basic home code. It was concluded that the exergy losses were mainly due to the internal thermal energy exchange sub-process. The exergy losses from this sub-process are higher when the reactants are preheated up to the ignition temperature without previous fuel oxidation. On the other hand, the global exergy destruction can be minored increasing the pressure, the reactants temperature and the oxygen content on the oxidant stream. This methodology allows the identification of the phenomena and processes that have larger exergy losses, the understanding of why these losses occur and how the exergy changes with the parameters associated to each system which is crucial to implement the syngas combustion from biomass products as a competitive technology.  相似文献   

8.
Exergy analysis of a binary geothermal power plant is performed using actual plant data to assess the plant performance and pinpoint sites of primary exergy destruction. Exergy destruction throughout the plant is quantified and illustrated using an exergy diagram, and compared to the energy diagram. The sites with greater exergy destructions include brine reinjection, heat exchanger and condenser losses. Exergetic efficiencies of major plant components are determined in an attempt to assess their individual performances. The energy and exergy efficiencies of the plant are 4.5% and 21.7%, respectively, based on the energy and exergy of geothermal water at the heat exchanger inlet. The energy and exergy efficiencies are 10.2% and 33.5%, respectively, based on the heat input and exergy input to the binary Rankine cycle. The effects of turbine inlet pressure and temperature and the condenser pressure on the exergy and energy efficiencies, the net power output and the brine reinjection temperature are investigated and the trends are explained.  相似文献   

9.
碳捕集与封存(CCS)技术能有效捕获燃煤电厂排放的CO2但再生能耗大且效率低。为提高燃煤电厂能源利用效率,提出集成有机朗肯循环(ORC)与CCS的太阳能-燃煤发电系统,利用热力学、火用和经济性分析模型对集成系统进行参数敏感性分析。基于外部燃料火用矩阵模型,分析再沸器所需热量中CO2压缩过程和太阳能集热器的热量占比及集成ORC系统对外部燃料火用贡献度的影响。研究表明:当热源比θ=0.4时的集成系统热经济性能最优且具有较合理的不可逆性;集成ORC系统后锅炉燃煤火用、一、二次再热燃煤火用对系统产品的贡献度均有所提高;随着θ增加,锅炉燃煤火用和一、二次再热燃煤火用对碳捕集系统产品的贡献度逐渐降低;压缩余热火用和太阳能火用的贡献度逐渐增加。  相似文献   

10.
《Geothermics》2005,34(5):632-645
This paper describes a performance evaluation of the Gonen geothermal district heating system (GGDHS) in Balikesir, Turkey, based on energy and exergy analyses. The exergy destructions in the overall GGDHS are quantified and illustrated using energy and exergy flow diagrams for a reference temperature of 6 °C. The results indicate that the exergy destructions in the system occur primarily as a result of losses in the pumps, heat exchangers, and pipelines, as well as losses associated with cooled geothermal waters injected back into the reservoir. These losses amount to 14.81%, 7.11%, 1.06%, and 12.96% of the total exergy input to the GGDHS, respectively. Both energy and exergy efficiencies of the overall GGDHS were investigated to analyze and improve system performance. The efficiencies were determined to be 45.91% and 64.06%, respectively.  相似文献   

11.
《Energy Conversion and Management》2005,46(11-12):1692-1702
Performance of an actual Diesel engine power plant with a rated output of 120 MW is analyzed based on the first and second laws of thermodynamics. The plant consists of seven identical Diesel engines and various subsystems including turbochargers, fuel heating units and heat exchangers performing various useful tasks. The engine runs on heavy fuel oil, and the pollutant emissions from the engine are greatly reduced by effective treatment systems. The characteristics and performance parameters of the internal combustion engines of the plant are evaluated. The mass, energy and exergy balances are verified for each flow stream in the power plant. The work and heat interactions, the exergy losses and the efficiencies of various components based on both energy and exergy concepts are evaluated. The thermal and the exergy efficiencies of the plant are determined to be 47% and 44%, respectively. The engine irreversibilities are due mostly to the irreversible combustion process and account for 32% of the total exergy input and 57% of the total irreversibilities in the plant. Most of the remaining irreversibilities in the plant occur in the desulphurization, intercooler, compressor and lubrication oil cooler units. The results should provide a realistic and meaningful ground for the performance evaluation of Diesel engine power units, and it may be used in the design and analysis of such systems.  相似文献   

12.
Standards development activities at IEEE in the area of electric heat tracing systems is reviewed, and the pertinent standards are summarized. They are: IEEE Std 622-1979, recommended practice for the design and installation of electric pipe heating systems for nuclear power generating stations; IEEE Std 515-1983, Recommended practice for the testing, design, installation and maintenance of electrical resistance heat tracing for industrial applications; and two standards in the development process, IEEE Std 622-198(6), Recommended practice for the design and installation of electric heat tracing systems for nuclear power generating stations, and Project 622B, Recommended practice for testing and startup procedures for electric heat tracing systems for power generating stations  相似文献   

13.
An integrated process of biomass gasification and solid oxide fuel cells (SOFC) is investigated using energy and exergy analyses. The performance of the system is assessed by calculating several parameters such as electrical efficiency, combined heat and power efficiency, power to heat ratio, exergy destruction ratio, and exergy efficiency. A performance comparison of power systems for different gasification agents is given by thermodynamic analysis. Exergy analysis is applied to investigate exergy destruction in components in the power systems. When using oxygen-enriched air as gasification agent, the gasifier reactor causes the greatest exergy destruction. About 29% of the chemical energy of the biomass is converted into net electric power, while about 17% of it is used to for producing hot water for district heating purposes. The total exergy efficiency of combined heat and power is 29%. For the case in which steam as the gasification agent, the highest exergy destruction lies in the air preheater due to the great temperature difference between the hot and cold side. The net electrical efficiency is about 40%. The exergy combined heat and power efficiency is above 36%, which is higher than that when air or oxygen-enriched air as gasification agent.  相似文献   

14.
In this paper,exergy analysis method is developed to assess a Rankine cycle system,by using supercritical CO2 as working fluid and powered by solar energy.The proposed system consists of evacuated solar collectors,throttling valve,high-temperature heat exchanger,low-temperature heat exchanger,and feed pump.The system is designed for utilize evacuated solar collectors to convert solar energy into mechanical energy and hence electricity.In order to investigate and estimate exergy performance of this system,the energy,entropy,exergy balances are developed for the components.The exergy destructions and exergy efficiency values of the system components are also determined.The results indicate that solar collector and high temperature heat exchanger which have low exergy efficiencies contribute the largest share to system irreversibility and should be the optimization design focus to improve system exergy effectiveness.Further,exergy analysis is a useful tool in this regard as it permits the performance of each process to be assessed and losses to be quantified.Exergy analysis results can be used in design,optimization,and improvement efforts.  相似文献   

15.
The cement production is an energy intensive industry with energy typically accounting for 50–60% of the production costs. In order to recover waste heat from the preheater exhaust and clinker cooler exhaust gases in cement plant, single flash steam cycle, dual-pressure steam cycle, organic Rankine cycle (ORC) and the Kalina cycle are used for cogeneration in cement plant. The exergy analysis for each cogeneration system is examined, and a parameter optimization for each cogeneration system is achieved by means of genetic algorithm (GA) to reach the maximum exergy efficiency. The optimum performances for different cogeneration systems are compared under the same condition. The results show that the exergy losses in turbine, condenser, and heat recovery vapor generator are relatively large, and reducing the exergy losses of these components could improve the performance of the cogeneration system. Compared with other systems, the Kalina cycle could achieve the best performance in cement plant.  相似文献   

16.
An improved very high temperature gas-cooled reactor (VHTR) and copper-chlorine (Cu–Cl) cycle-based nuclear hydrogen production system is proposed and investigated in this paper, in order to reveal the unknown thermo-economic characteristics of the system under variable operating conditions. Energy, exergy and economic analysis method and particle swarm optimization algorithm are used to model and optimize the system, respectively. Parametric analysis of the effects of several key operating parameters on the system performance is conducted, and energy loss, exergy loss, and investment cost distributions of the system are discussed under three typical production modes. Results show that increasing the reactor subsystem pressure ratio can enhance the system's thermo-economic performance, and the total efficiencies and cost of producing compressed hydrogen from nuclear energy are respectively lower and higher than that of generating electricity. When the system operates at the maximum hydrogen production rate of 403.1 mol/s, the system's net electrical power output, thermal efficiency, exergy efficiency, and specific energy cost are found to be 38.77 MW, 39.3%, 41.26%, and 0.0731 $/kW·h, respectively. And when the system's hydrogen production load equals to 0, these values are respectively calculated to be 177.25 MW, 50.64%, 53.29%, and 0.0268 $/kW·h. In addition, more than 90% of the system's total energy losses are caused by condenser and Cu–Cl cycle, and about 50–60% of the system's total exergy destructions occur in VHTR. About 60% and 30% of the system's specific energy cost are respectively caused by the equipment investment and the system operation & maintenance, and the investment costs of VHTR and Cu–Cl plant are the system's main capital investment sources.  相似文献   

17.
Results are reported of energy and exergy analyses of the Imperial Chemical Industries low-pressure process for methanol from natural gas. The process involves generation of a synthesis gas by steam-methane reforming, compression of the synthesis gas, methanol synthesis, and distillation of the crude methanol. The analyses are carried out using a computer code capable of performing process-simulation and energy and exergy analyses. The energy and exergy efficiencies for the overall process are found to be 39 and 41%, respectively. The majority of energy losses is found to be associated with emissions of cooling water and stack gas. The majority of exergy losses is found to be due to internal consumptions, particularly within the combustion, compression and methanol synthesis systems. The energy losses associated with emissions of cooling water and stack gas, because of their low quality, are shown to be relatively insignificant on an exergy basis. The results may prove valuable to those involved in the design, optimization and modification of production plants for methanol and related fuels.  相似文献   

18.
This communication presents second law analysis based on exergy concept for a solar thermal power system. Basic energy and exergy analysis for the system components (viz. parabolic trough collector/receiver and Rankine heat engine etc.) are carried out for evaluating the energy and exergy losses as well as exergetic efficiency for typical solar thermal power system under given operating conditions. Relevant energy flow and exergy flow diagrams are drawn to show the various thermodynamic and thermal losses. It is found that the main energy loss takes place at the condenser of the heat engine part whereas the exergy analysis shows that the collector-receiver assembly is the part where the losses are maximum. The analysis and results can be used for evaluating the component irreversibilities which can also explain the deviation between the actual efficiency and ideal efficiency of solar thermal power system.  相似文献   

19.
J. Rizk  M. Nemer  D. Clodic 《Energy》2012,37(1):417-429
Distillation columns are one of the main methods used for separating air components. Their inconvenient is their high energy consumption. The distillation process is simulated in three types of columns and the exergy losses in the different parts calculated. A sensitivity analysis is realized in order to optimize the geometric and the operational parameters of each type of column. A comparative exergy analysis between the distillation columns considered for cryogenic air separation shows that the exergy efficiency of a double diabatic column, with heat transfer all through the length of the column, is 23% higher than that of the conventional adiabatic double columns.  相似文献   

20.
Energy and exergy analyses of space heating in buildings   总被引:1,自引:0,他引:1  
In the present study, energy and exergy analyses are presented for the whole process of space heating in buildings. This study is based on a pre-design analysis tool, which has been produced during ongoing work for the International Energy Agency (IEA) formed within the Energy Conservation in Buildings and Community Systems Programme (ECBCSP) Annex 37. Throughout this paper, in all of the calculations such as heat losses and gains were taken according to Turkish Standards Institution TSE, which is in accordance with the European Standard TS EN ISO 13789. In the analysis, heating load is taken account but cooling load is neglected and the calculations presented here are done using steady state conditions. The analysis is applied to an office in Izmir with a volume of 720 m3 and a net floor area of 240 m2 as an example of application. Indoor and exterior air temperatures are 20 °C and 0 °C, respectively. It is assumed that the office is heated by a liquid natural gas (LNG) fired conventional boiler, an LNG condensing boiler and an external air–air heat pump. With this study, energy and exergy flows are investigated. Energy and exergy losses in the whole system are quantified and illustrated. The highest efficiency values in terms of energy and exergy were found to be 80.9% for external air–air heat pump and 8.69% for LNG condensing boiler, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号