首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is a good opportunity for enlightening the services of the mobile devices by introducing computational offloading using cloud technology. Offloading is a process for managing the complexity of the mobile environment by migrating computational load to the cloud. The mobile devices oblige the quick response for the offloading requests; it is dependent on network connectivity. The cloud services take long set‐up time irrespective of network connectivity. In this paper, new system architecture for the dynamic task offloading in the mobile cloud environment is proposed. The architecture includes the offloading algorithm that concentrates on energy consumption of the tasks both in the local and remote environment. The proposed algorithm formulates a collective task execution model for minimizing the energy consumption. The architecture concentrates on the network model by considering the task completion time in three different network scenarios. The experimental results show the efficiency of the suggested architecture in reducing the energy consumption and completion time of the tasks.  相似文献   

2.
It is a visible fact that the growth of mobile devices is enormous. More computations are required to be carried out for various applications in these mobile devices. But the drawback of the mobile devices is less computation power and low available energy. The mobile cloud computing helps in resolving these issues by integrating the mobile devices with cloud technology. Again, the issue is increased in the latency as the task and data to be offloaded to the cloud environment uses WAN. Hence, to decrease the latency, this paper proposes cloudlet‐based dynamic task offloading (CDTO) algorithm where the task can be executed in device environment, cloudlet environment, cloud server environment, and integrated environment. The proposed algorithm, CDTO, is tested in terms of energy consumption and completion time.  相似文献   

3.
Mobile cloud computing is a promising approach to improve the mobile device's efficiency in terms of energy consumption and execution time. In this context, mobile devices can offload the computation‐intensive parts of their applications to powerful cloud servers. However, they should decide what computation‐intensive parts are appropriate for offloading to be beneficial instead of local execution on the mobile device. Moreover, in the real world, different types of clouds/servers with heterogeneous processing speeds are available that should be considered for offloading. Because making offloading decision in multisite context is an NP‐complete, obtaining an optimal solution is time consuming. Hence, we use a near optimal decision algorithm to find the best‐possible partitioning for offloading to multisite clouds/servers. We use a genetic algorithm and adjust it for multisite offloading problem. Also, genetic operators are modified to reduce the ineffective solutions and hence obtain the best‐possible solutions in a reasonable time. We evaluated the efficiency of the proposed method using graphs of real mobile applications in simulation experiments. The evaluation results demonstrate that our proposal outperforms other counterparts in terms of energy consumption, execution time, and weighted cost model.  相似文献   

4.
移动边缘计算(Mobile Edge Computing,MEC)将云服务器的计算资源扩展到更靠近用户一侧的网络边缘,使得用户可以将任务卸载到边缘服务器,从而克服原先云计算中将任务卸载到云服务器所带来的高时延问题。首先介绍了移动边缘计算的基本概念、基本框架和应用场景,然后围绕卸载决策、联合资源分配的卸载决策分别从单MEC服务器和多MEC服务器两种场景总结了任务卸载技术的研究现状,最后结合当前MEC卸载技术中存在的不足展望了未来MEC卸载技术的研究。  相似文献   

5.
Mobile device users are involved in social networking, gaming, learning, and even some office work, so the end users expect mobile devices with high-response computing capacities, storage, and high battery power consumption. The data-intensive applications, such as text search, online gaming, and face recognition usage, have tremendously increased. With such high complex applications, there are many issues in mobile devices, namely, fast battery draining, limited power, low storage capacity, and increased energy consumption. The novelty of this work is to strike a balance between time and energy consumption of mobile devices while using data-intensive applications by finding the optimal offloading decisions. This paper proposes a novel efficient Data Size-Aware Offloading Model (DSAOM) for data-intensive applications and to predict the appropriate resource provider for dynamic resource allocation in mobile cloud computing. Based on the data size, the tasks are separated and gradually allocated to the appropriate resource providers for execution. The task is placed into the appropriate resource provider by considering the availability services in the fog nodes or the cloud. The tasks are split into smaller portions for execution in the neighbor fog nodes. To execute the task in the remote side, the offloading decision is made by using the min-cut algorithm by considering the monetary cost of the mobile device. This proposed system achieves low-latency time 13.2% and low response time 14.1% and minimizes 24% of the energy consumption over the existing model. Finally, according to experimental findings, this framework efficiently lowers energy use and improves performance for data-intensive demanding application activities, and the task offloading strategy is effective for intensive offloading requests.  相似文献   

6.
Together with an explosive growth of the mobile applications and emerging of cloud computing concept, mobile cloud computing (MCC) has been introduced to be a potential technology for mobile services. MCC integrates the cloud computing into the mobile environment and overcomes obstacles related to the performance (e.g., battery life, storage, and bandwidth), environment (e.g., heterogeneity, scalability, and availability), and security (e.g., reliability and privacy) discussed in mobile computing. This paper gives a survey of MCC, which helps general readers have an overview of the MCC including the definition, architecture, and applications. The issues, existing solutions, and approaches are presented. In addition, the future research directions of MCC are discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
为提高计算任务卸载的效率,提出了一种基于D2D通信、移动边缘计算和云计算的分层任务卸载框架,并引入D2D协作中继技术辅助用户接入远端计算资源。针对所提任务卸载框架在多用户场景中可能存在上行通信拥塞、边缘计算资源受限、D2D复用干扰和云计算回程时延等问题,设计了一种基于博弈论的卸载调度和负载均衡方案,充分利用了所提任务卸载框架中各层计算和通信资源。仿真结果表明,所提方案能够有效降低端到端时延和卸载能耗,并在资源受限的条件下具有良好的稳定性。  相似文献   

8.
In this paper, we study the task offloading optimization problem in satellite edge computing environments to reduce the whole communication latency and energy consumption so as to enhance the offloading success rate. A three-tier machine learning framework consisting of collaborative edge devices, edge data centers, and cloud data centers has been proposed to ensure an efficient task execution. To accomplish this goal, we also propose a Q-learning-based reinforcement learning offloading strategy in which both the time-sensitive constraints and data requirements of the computation-intensive tasks are taken into account. It enables various types of tasks to select the most suitable satellite nodes for the computing deployment. Simulation results show that our algorithm outperforms other baseline algorithms in terms of latency, energy consumption, and successful execution efficiency.  相似文献   

9.
针对在任务卸载时由于设备的移动而导致任务迁移这一问题,将任务卸载过程建模为马尔科夫决策过程,并通过优化资源分配和任务卸载策略,解决基于联合时延和能耗的损耗函数最小的优化问题。首先将问题转化为最小化损耗函数之和,并在决策前对每个任务的传输功率采用二分法进行优化,然后基于获得的传输功率提出一种QLBA(Q-learning Based Algorithm)来完成卸载决策。仿真结果证实所提方案优于传统算法。  相似文献   

10.
Aiming at the problem of high-latency,high-energy-consumption,and low-reliability mobile caused by computing-intensive and delay-sensitive emerging mobile applications in the explosive growth of IoT smart mobile terminals in the mobile edge computing environment,an offload decision-making model where delay and energy consumption were comprehensively included,and a computing resource game allocation model based on reputation that took into account was proposed,then improved particle swarm algorithm and the method of Lagrange multipliers were used respectively to solve models.Simulation results show that the proposed method can meet the service requirements of emerging intelligent applications for low latency,low energy consumption and high reliability,and effectively implement the overall optimized allocation of computing offload resources.  相似文献   

11.
随着智能交通的快速发展和车联网中数据流量爆炸式的增长,汽车终端请求卸载的任务对时延和带宽有了更加严苛的要求。在现有的云计算服务模式中,车辆可以访问云服务器来获得强大的计算、存储和网络资源,但缺点是通信传输时延较大,仅依靠云计算可能会导致过度的延迟。为了更加合理利用资源、减小时延、优化卸载策略,提出了一种基于粒子群优化算法的“车-边-云”协同卸载方案。首先通过接入点附近的软件定义网络(Software Define Network,SDN)控制器根据终端用户附近边缘节点、本地终端和云计算节点的计算资源和容量情况得出最优的卸载策略,充分利用本地、移动边缘计算(Mobile Edge Computing,MEC)设备、云端的计算资源,然后通过粒子群优化算法得出“车-边-云”各计算节点的卸载系数,即最优卸载策略。实验结果表明,相比于其他卸载策略,所提的卸载机制对时延优化效果明显,提高了计算资源的利用率。  相似文献   

12.
The rapid growth of mobile internet services has yielded a variety of computation-intensive applications such as virtual/augmented reality. Mobile Edge Computing (MEC), which enables mobile terminals to offload computation tasks to servers located at the edge of the cellular networks, has been considered as an efficient approach to relieve the heavy computational burdens and realize an efficient computation offloading. Driven by the consequent requirement for proper resource allocations for computation offloading via MEC, in this paper, we propose a Deep-Q Network (DQN) based task offloading and resource allocation algorithm for the MEC. Specifically, we consider a MEC system in which every mobile terminal has multiple tasks offloaded to the edge server and design a joint task offloading decision and bandwidth allocation optimization to minimize the overall offloading cost in terms of energy cost, computation cost, and delay cost. Although the proposed optimization problem is a mixed integer nonlinear programming in nature, we exploit an emerging DQN technique to solve it. Extensive numerical results show that our proposed DQN-based approach can achieve the near-optimal performance.  相似文献   

13.
Mobile Edge Computing (MEC) has been considered a promising solution that can address capacity and performance challenges in legacy systems such as Mobile Cloud Computing (MCC). In particular, such challenges include intolerable delay, congestion in the core network, insufficient Quality of Experience (QoE), high cost of resource utility, such as energy and bandwidth. The aforementioned challenges originate from limited resources in mobile devices, the multi-hop connection between end-users and the cloud, high pressure from computation-intensive and delay-critical applications. Considering the limited resource setting at the MEC, improving the efficiency of task offloading in terms of both energy and delay in MEC applications is an important and urgent problem to be solved. In this paper, the key objective is to propose a task offloading scheme that minimizes the overall energy consumption along with satisfying capacity and delay requirements. Thus, we propose a MEC-assisted energy-efficient task offloading scheme that leverages the cooperative MEC framework. To achieve energy efficiency, we propose a novel hybrid approach established based on Particle Swarm Optimization (PSO) and Grey Wolf Optimizer (GWO) to solve the optimization problem. The proposed approach considers efficient resource allocation such as sub-carriers, power, and bandwidth for offloading to guarantee minimum energy consumption. The simulation results demonstrate that the proposed strategy is computational-efficient compared to benchmark methods. Moreover, it improves energy utilization, energy gain, response delay, and offloading utility.  相似文献   

14.
With the rapid development of cloud computing, the number of cloud users is growing exponentially. Data centers have come under great pressure, and the problem of power consumption has become increasingly prominent. However, many idle resources that are geographically distributed in the network can be used as resource providers for cloud tasks. These distributed resources may not be able to support the resource‐intensive applications alone because of their limited capacity; however, the capacity will be considerably increased if they can cooperate with each other and share resources. Therefore, in this paper, a new resource‐providing model called “crowd‐funding” is proposed. In the crowd‐funding model, idle resources can be collected to form a virtual resource pool for providing cloud services. Based on this model, a new task scheduling algorithm is proposed, RC‐GA (genetic algorithm for task scheduling based on a resource crowd‐funding model). For crowd‐funding, the resources come from different heterogeneous devices, so the resource stability should be considered different. The scheduling targets of the RC‐GA are designed to increase the stability of task execution and reduce power consumption at the same time. In addition, to reduce random errors in the evolution process, the roulette wheel selection operator of the genetic algorithm is improved. The experiment shows that the RC‐GA can achieve good results.  相似文献   

15.
An ad hoc mobile cloud had been proposed to offload workload to neighboring mobile devices for resource sharing.The issues that whether to offload or not was addressed,how to select the suitable mobile device to offload,and how to assign workload.Game theoretic approach was used to formulate this problem,and then,a distributed scheme was designed to achieve the optimal solution.The experimental results validate the rightness and effectiveness of proposed scheme.  相似文献   

16.
As a promising computing paradigm, Mobile Edge Computing (MEC) provides communication and computing capability at the edge of the network to address the concerns of massive computation requirements, constrained battery capacity and limited bandwidth of the Internet of Things (IoT) systems. Most existing works on mobile edge task ignores the delay sensitivities, which may lead to the degraded utility of computation offloading and dissatisfied users. In this paper, we study the delay sensitivity-aware computation offloading by jointly considering both user's tolerance towards delay of task execution and the network status under computation and communication constraints. Specifically, we use a specific multi-user and multi-server MEC system to define the latency sensitivity of task offloading based on the analysis of delay distribution of task categories. Then, we propose a scoring mechanism to evaluate the sensitivity-dependent utility of task execution and devise a Centralized Iterative Redirection Offloading (CIRO) algorithm to collect all information in the MEC system. By starting with an initial offloading strategy, the CIRO algorithm enables IoT devices to cooperate and iteratively redirect task offloading decisions to optimize the offloading strategy until it converges. Extensive simulation results show that our method can significantly improve the utility of computation offloading in MEC systems and has lower time complexity than existing algorithms.  相似文献   

17.
提出了一种基于滑动窗口的资源预留SWRR(sliding window based resource reservation)算法,它将预留资源在整个资源池中所占的比例称为窗口。窗口的“滑动”包含2层含义:1)窗口大小动态变化;2)窗口中的资源动态刷新。SWRR已被应用于一个大型的云计算应用平台。实验数据表明,SWRR通过合理资源预留,在兼顾所有任务调度的基础上,可为特定用户提供有效的服务可用性保障。  相似文献   

18.
Survey on computation offloading in mobile edge computing   总被引:1,自引:0,他引:1  
Computation offloading in mobile edge computing would transfer the resource intensive computational tasks to the edge network.It can not only solve the shortage of mobile user equipment in resource storage,computation performance and energy efficiency,but also deal with the problem of resource occupation,high latency and network load compared to cloud computing.Firstly the architecture of MEC was introduce and a comparative analysis was made according to various deployment schemes.Then the key technologies of computation offloading was studied from three aspects of decision on computation offloading,allocation of computing resource within MEC and system implement of MEC.Based on the analysis of MEC deployment scheme in 5G,two optimization schemes on computation offloading was proposed in 5G MEC.Finally,the current challenges in the mobility management was summarized,interference management and security of computation offloading in MEC.  相似文献   

19.
An efficient task scheduling approach shows promising way to achieve better resource utilization in cloud computing. Various task scheduling approaches with optimization and decision‐making techniques have been discussed up to now. These approaches ignored scheduling conflict among the similar tasks. The conflict often leads to miss the deadlines of the tasks. The work studies the implementation of the MCDM (multicriteria decision‐making) techniques in backfilling algorithm to execute deadline‐based tasks in cloud computing. In general, the tasks are selected as backfill tasks, whose role is to provide ideal resources to other tasks in the backfilling approach. The selection of the backfill task is challenging one, when there are similar tasks. It creates conflict in the scheduling. In cloud computing, the deadline‐based tasks have multiple parameters such as arrival time, number of VMs (virtual machines), start time, duration of execution, and deadline. In this work, we present the deadline‐based task scheduling algorithm as an MCDM problem and discuss the MCDM techniques: AHP (Analytical Hierarchy Process), VIKOR (VIseKriterijumska Optimizacija I Kompromisno Resenje), and TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) to avoid similar task scheduling conflicts. We simulate the backfilling algorithm along with three MCDM mechanisms to avoid scheduling conflicts among the similar tasks. The synthetic workloads are considered to study the performance of the proposed scheduling algorithm. The mechanism suggests an efficient VM allocation and its utilization for deadline‐based tasks in the cloud environment.  相似文献   

20.
简要阐述了移动互联网的发展状况和特点,并指出其发展瓶颈。介绍了云计算的基本概念和关键技术。从当前移动互联网发展的背景出发,分析了云计算技术和移动互联网二者之间相互促进、相互影响的关系。重点探讨了云计算在移动互联网中的服务提供模式,逐步分析了云计算在移动互联网上的应用,并指出了其发展过程中遇到的问题。云计算技术使得用户可以通过网络方便地使用云中的各种资源,期望可以发挥云计算的优势,助推移动互联网的发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号