首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
A single-cylinder, direct-injection diesel engine was tested with regular diesel oil, neat Jatropha biodiesel, and biodiesel with butanol injection into the inlet manifold. An engine fueled with neat biodiesel showed 5% reduction of the fuel conversion efficiency and 17% increase in specific fuel consumption relative to diesel oil. With butanol injection at a rate of 25% of the total fuel consumption, the efficiency was equivalent to that of diesel oil and specific fuel consumption was less than that of neat biodiesel. Engine emissions with biofuel were improved except for carbon monoxide and unburned hydrocarbons. It was concluded that the diesel engine can operate on the neat biofuel (biodiesel plus alcohol) with the fuel conversion efficiency equivalent to that of the diesel oil.  相似文献   

2.
With a specific end goal to take care of the worldwide demand for energy, a broad research is done to create alternative and cost effective fuel. The fundamental goal of this examination is to investigate the combustion, performance and emission characteristics of diesel engine using biodiesel blends enriched with HHO gas. The biodiesel blends are gotten by blending KOME obtained from transesterification of karanja oil in various proportions with neat diesel. The HHO gas is produced by the electrolysis of water in the presence of sodium bicarbonate electrolyte. The constant flow of HHO gas accompanied with biodiesel guarantees lessened brake specific fuel consumption by 2.41% at no load and 17.53% at full load with increased the brake thermal efficiency by 2.61% at no load and 21.67% at full load contrasted with neat diesel operation. Noteworthy decline in unburned hydrocarbon, carbon monoxide, carbon-dioxide emissions and particulate matter with the exception of NOx discharge is encountered. The addition of EGR controls this hike in NOx with a slight decline in the performance characteristics. It is clear that the addition of HHO gas with biodiesel blends along with EGR in the test engine improved the overall characterization of engine.  相似文献   

3.
Biodiesel either in neat form or as a mixture with diesel fuel is widely investigated to solve the twin problem of depletion of fossil fuels and environmental degradation. The main objective of the present study is to compare performance, emission and combustion characteristics of biodiesel derived from non edible Jatropha oil in a dual fuel diesel engine with base line results of diesel fuel. The performance parameters evaluated were: brake thermal efficiency, brake specific fuel consumption, power output. As a part of combustion study, in-cylinder pressure, rate of pressure rise and heat release rates were evaluated. The emission parameters such as carbon monoxide, carbon dioxide, un-burnt hydrocarbon, oxides of nitrogen and smoke opacity with the different fuels were also measured and compared with base line results. The different properties of Jatropha oil after transestrification were within acceptable limits of standards as set by many countries. The brake thermal efficiency of Jatropha methyl ester and its blends with diesel were lower than diesel and brake specific energy consumption was found to be higher. However, HC, CO and CO2 and smoke were found to be lower with Jatropha biodiesel fuel. NOx emissions on Jatropha biodiesel and its blend were higher than Diesel. The results from the experiments suggest that biodiesel derived from non edible oil like Jatropha could be a good substitute to diesel fuel in diesel engine in the near future as far as decentralized energy production is concerned. In view of comparable engine performance and reduction in most of the engine emissions, it can be concluded and biodiesel derived from Jatropha and its blends could be used in a conventional diesel engine without any modification.  相似文献   

4.
非直喷式增压柴油机燃用生物柴油的性能与排放特性   总被引:36,自引:0,他引:36  
研究了非直喷式增压柴油机燃用柴油一生物柴油混合燃料的性能和排放特性。未对原机作任何调整和改动,研究了不同生物柴油掺混比例的混合燃料对功率、油耗、烟度和NOx排放的影响。结果表明:非直喷式柴油机燃用生物柴油后柴油机功率略有下降,油耗有所上升,烟度大幅下降,NOx排放增加明显。油耗、烟度和NOx的变化均与生物柴油掺混比例呈线性关系,合适的生物柴油掺混比例即可以保持柴油机的性能,又可有效地降低碳烟排放,且不引起NOx排放的显著变化。对于该增压柴油机,掺混生物柴油对外特性下的排放影响最大,影响最小的为标定转速下的负荷特性。不论是全负荷还是部分负荷,燃用生物柴油时低速下的烟度降低和NOx上升幅度均比高速时大,而同转速下高负荷时烟度降低和NOx上升更为明显。  相似文献   

5.
Experiments has been carried out to estimate the performance, emission and combustion characteristics of a single cylinder; four stroke variable compression ratio multi fuel engine fuelled with waste cooking oil methyl ester and its blends with standard diesel. Tests has been conducted using the fuel blends of 20%, 40%, 60% and 80% biodiesel with standard diesel, with an engine speed of 1500 rpm, fixed compression ratio 21 and at different loading conditions. The performance parameters elucidated includes brake thermal efficiency, specific fuel consumption, brake power, indicated mean effective pressure, mechanical efficiency and exhaust gas temperature. The exhaust gas emission is found to contain carbon monoxide, hydrocarbon, nitrogen oxides and carbon dioxide. The results of the experiment has been compared and analyzed with standard diesel and it confirms considerable improvement in the performance parameters as well as exhaust emissions. The blends when used as fuel results in the reduction of carbon monoxide, hydrocarbon, carbon dioxide at the expense of nitrogen oxides emissions. It has found that the combustion characteristics of waste cooking oil methyl ester and its diesel blends closely followed those of standard diesel.  相似文献   

6.
《Biomass & bioenergy》2003,24(2):141-149
Vegetable oils are produced from numerous oil seed crops. While all vegetable oils have high-energy content, most require some processing to assure safe use in internal combustion engines. Some of these oils already have been evaluated as substitutes for diesel fuels. With the exception of rape seed oil which is the principal raw material for biodiesel fatty acid methyl esters, sunflower oil, corn oil and olive oil, which are abundant in Southern Europe, along with some wastes, such as used frying oils, appear to be attractive candidates for biodiesel production. In this paper, fuel consumption and exhaust emissions measurements from a single cylinder, stationary diesel engine are described. The engine was fueled with pure marine diesel fuel and blends containing two types of biodiesel, at proportions up to 50%. The two types of biodiesel appeared to have equal performance, and irrespective of the raw material used for their production, their addition to the marine diesel fuel improved the particulate matter, unburned hydrocarbons, nitrogen oxide and carbon monoxide emissions.  相似文献   

7.
Biodiesel is receiving serious attention globally as a potential alternative fuel for replacing mineral diesel, partially or fully. In this review paper, most prominent methods of biodiesel production commercially, life-cycle analysis and economic issues related to biodiesel, engine performance, combustion and emission characteristics including particulate, engine compatibility issues and effect of biodiesel usage on engine component wear and lubricating oil are comprehensively discussed. Majority of biodiesel produced globally is via base-catalyzed transesterification process since this is a low temperature and pressure process, having high conversion rates without intermediate steps, and it uses inexpensive materials of construction for the plant. Catalyst types (alkaline, acidic or enzymatic), catalyst concentration, molar ratio of alcohol/oil, reaction temperature, moisture content of reactants, and free fatty acid (FFA) content of oil are the main factors affecting biodiesel (ester) yield from the transesterification process. Substantial reduction in particulate matter (PM), total hydrocarbons (THC) and carbon monoxide (CO) emissions in comparison to mineral diesel, and increased brake specific fuel consumption (BSFC) and oxides of nitrogen (NOX) emissions are reported by most researchers using unmodified compression ignition (CI) engines. This review covers several aspects, which are not covered by previous review articles, such as effect of biodiesel on unregulated emissions, effect of biodiesel on carbon deposits, wear of key engine components, and lubricating oil in long-term endurance studies. It emerges from literature review that even minor blends of biodiesel help control emissions and ease pressure on scarce petroleum resources without sacrificing engine power output, engine performance and fuel economy. This review underscores that future studies should focus on optimization of fuel injection equipment and hardware modifications to develop dedicated biodiesel engines, improve low temperature performance of biodiesel fuelled engines, develop new biodiesel compatible lubricating oil formulations and special materials for engine components before implementing large-scale substitution of mineral diesel by biodiesel globally.  相似文献   

8.
基于不同原料生物柴油混合燃料的发动机性能研究   总被引:4,自引:0,他引:4  
对一台TDI柴油机燃用花椒籽、棉籽、棕榈和餐饮废油脂4种不同原料制成的生物柴油(以10%体积比分别与柴油混合制成)的动力性、经济性和排放特性进行了试验研究,探讨了4种生物柴油对发动机性能的影响。研究结果表明:在燃用4种生物柴油时,棕榈油制生物柴油的功率和纯柴油基本一致,其余混合燃料的功率都比纯柴油略有下降;4种混合燃料的油耗与纯柴油基本一致;与纯柴油相比,生物柴油混合燃料的碳烟、CO、HC排放均较低,而NOx排放略高。  相似文献   

9.
In this study, the applicabilities of Artificial Neural Networks (ANNs) have been investigated for the performance and exhaust-emission values of a diesel engine fueled with biodiesels from different feedstocks and petroleum diesel fuels. The engine performance and emissions characteristics of two different petroleum diesel-fuels (No. 1 and No. 2), biodiesels (from soybean oil and yellow grease), and their 20% blends with No. 2 diesel fuel were used as experimental results. The fuels were tested at full load (100%) at 1400-rpm engine speed, where the engine torque was 257.6 Nm. To train the network, the average molecular weight, net heat of combustion, specific gravity, kinematic viscosity, C/H ratio and cetane number of each fuel are used as the input layer, while outputs are the brake specific fuel-consumption, exhaust temperature, and exhaust emissions. The back-propagation learning algorithm with three different variants, single layer, and logistic sigmoid transfer function were used in the network. By using weights in the network, formulations have been given for each output. The network has yielded R2 values of 0.99 and the mean % errors are smaller than 4.2 for the training data, while the R2 values are about 0.99 and the mean % errors are smaller than 5.5 for the test data. The performance and exhaust emissions from a diesel engine, using biodiesel blends with No. 2 diesel fuel up to 20%, have been predicted using the ANN model.  相似文献   

10.
The increased focus on alternative fuels research in the recent years are mainly driven by escalating crude oil prices, stringent emission norms and the concern on clean environment. The processed form of vegetable oil (biodiesel) has emerged as a potential substitute for diesel fuel on account of its renewable source and lesser emissions. The experimental work reported here has been carried out on a turbocharged, direct injection, multi-cylinder truck diesel engine fitted with mechanical distributor type fuel injection pump using biodiesel-methanol blend and neat karanji oil derived biodiesel under constant speed and varying load conditions without altering injection timings. The results of the experimental investigation indicate that the ignition delay for biodiesel-methanol blend is slightly higher as compared to neat biodiesel and the maximum increase is limited to 1 deg. CA. The maximum rate of pressure rise follow a trend of the ignition delay variations at these operating conditions. However, the peak cylinder pressure and peak energy release rate decreases for biodiesel-methanol blend. In general, a delayed start of combustion and lower combustion duration are observed for biodiesel-methanol blend compared to neat biodiesel fuel. A maximum thermal efficiency increase of 4.2% due to 10% methanol addition in the biodiesel is seen at 80% load and 16.67 s−1 engine speed. The unburnt hydrocarbon and carbon monoxide emissions are slightly higher for the methanol blend compared to neat biodiesel at low load conditions whereas at higher load conditions unburnt hydrocarbon emissions are comparable for the two fuels and carbon monoxide emissions decrease significantly for the methanol blend. A significant reduction in nitric oxide and smoke emissions are observed with the biodiesel-methanol blend investigated.  相似文献   

11.
In this study, performance of a diesel engine operated with Jatropha and Palm biodiesel blends at high idling conditions has been evaluated. The result obtained from experiment elucidate that, at all idling modes HC and CO emissions of both blends decreases, however, NOx emissions increases compared to pure diesel fuel. Jatropha biodiesel has higher viscosity compared to Palm biodiesel, which might have degraded the spray characteristics and caused slightly improper mixing which might have led to slightly incomplete combustion, thus at both idling conditions, Jatropha blends emitted higher CO and HC compared to Palm biodiesels. Compared to diesel fuel, CO emissions were 5.9–9.7%, 17.6–22.6%, 23.5–29%, 2.9–6.4%, 5.9–14.5% and 11.8–17.74% less, HC emissions were 10.3–11.5%, 24.13–30.76%, 34.5–39%, 6.9–7.7%, 26–27% and 31–35% less and NOx emissions were 8.3–9.5%, 14–15%, 22–25%, 5–7.14%, 10–11.3% and 17–18% more respectively for 5, 10 and 20% blends of Palm and Jatropha biodiesel. Compared to diesel fuel, at high idling conditions brake specific fuel consumption all Palm and Jatropha biodiesel–diesel blends increased. Compared to diesel fuel, BSFC were 1.14–1.35%, 2.28–2.96%, 7.1–8.35%, 2.28–2.69%, 3.98–5.39% and 8.83–9.29% more respectively for 5, 10 and 20% blends of Palm and Jatropha biodiesel.  相似文献   

12.
In this study, neat biodiesel with octanol additive was employed in a diesel engine and its effects on engine emission were studied. The five fuels evaluated were neat palm kernal oil biodiesel, octanol blended with biodiesel by 10%, 20%, and 30% volume, and diesel. All the emissions are reduced by the addition of octanol in biodiesel in all loads owing to the higher oxygen concentration of air/fuel mixtures and improved atomization. Hence, it is concluded that the neat biodiesel and octanol blends can be employed as an alternative fuel for existing unmodified diesel engines owing to its lesser emission characteristics.  相似文献   

13.
The purpose of this study is to experimentally investigate the use of grapeseed oil as a fuel substitute obtained from biomass waste from winery industry and the synergic effect of hydrogen addition for compression ignition engine application. The experiments were carried out in a single cylinder, four stroke diesel engine for various loads and energy share of hydrogen. Combustion, performance and emission characteristics of grapeseed biodiesel, neat grapeseed oil and diesel have been analysed and compared with the results obtained with hydrogen induction in the intake manifold in dual fuel mode. At full load, maximum brake thermal efficiency of the engine with diesel, grapeseed biodiesel and neat grapeseed oil has increased from 32.34%, 30.28% and 25.94% to 36.04%, 33.97% and 30.95% for a maximum hydrogen energy share of 14.46%, 14.1% and 12.8% respectively. Although there is an increasing trend in Nitric Oxide emission with hydrogen induction, smoke, brake specific hydrocarbon, carbon monoxide, and carbon dioxide emissions respectively, reduces. Nitric oxide emission of Grapeseed biodiesel with maximum hydrogen share at full load is higher by 43.61% and smoke emission lower by 19.73% compared to biodiesel operation without hydrogen induction.  相似文献   

14.
An experimental study is conducted to evaluate and compare the use of a diesel fuel supplement, specifically a 25/75% and a 50/50% blend of waste olive oil and commercial diesel fuel, in a four-stroke, DI (Direct Injection) diesel engine and in a four-stroke, IDI (Indirect Injection) diesel engine having a swirl-combustion chamber. The influence of the blends (diesel fuel+olive oil), for a large range of loads, has been examined on fuel consumption, maximum pressure, exhaust temperature, exhaust smokiness and exhaust-gas emissions such as nitrogen oxides (NOx), hydrocarbons (HC) and carbon monoxide (CO). The differences in the measured performance and exhaust-emission parameters, from the baseline operation of either engine, are determined and compared. The study shows, for both the DI and IDI engines, a small penalty in specific fuel consumption, a moderate increase in exhaust smokiness and essentially unaltered maximum pressures and exhaust temperatures when using the blends. Also, for both the IDI and DI engines when using the blends, the study shows moderate decreases in emitted nitrogen oxides and increases in hydrocarbons as well as negligible increases in emitted carbon monoxide. Theoretical aspects of diesel engine combustion are used to aid the interpretation of the observed engines' behaviour.  相似文献   

15.
Many performance and emission tests have been carried out in reciprocating diesel engines that use biodiesel fuel over the past years and very few in gas turbine engines. This work aims at assessing the thermal performance and emissions at full and partial loads of a 30 kW diesel micro-turbine engine fed with diesel, biodiesel and their blends as fuel. A cycle simulation was performed using the Gate Cycle GE Enter software to evaluate the thermal performance of the 30 kW micro-turbine engine. Performance and emission tests were carried out on a 30 kW diesel micro-turbine engine installed in the NEST laboratories of the Federal University of Itajubá, and the performance results were compared with those of the simulation. There was a good agreement between the simulations and the experimental results from the full load down to about 50% of the load for diesel, biodiesel and their blends. The biodiesel and its blends used as fuel in micro-turbines led to no significant changes in the engine performance and behaviour compared to diesel fuel. The exhaust emissions were evaluated for pure biodiesel and its blends and conventional diesel. The results revealed that the use of biodiesel resulted in a slightly higher CO, lower NOx and no SO2 emissions.  相似文献   

16.
The present study investigates the effect of Pithecellobium dulce biodiesel (PDBD) blends with diesel fuel on compression ignition (CI) engine emissions. Initially, PDBD was prepared by using a base transesteri?cation process. The GC‐MS, 1H NMR, and Fourier transform infrared characterization of PDBD was carried out, and fuel properties were determined. The experiments were conducted on a single cylinder, CI engine using three blended fuels: PDBD5 (5% biodiesel and 95% diesel), PDBD10 (10% biodiesel and 90% diesel), and PDBD20 (20% biodiesel and 80% diesel). The experimental outcomes revealed that 20% of PDBD reduces 19.64% carbon monoxide, 17.64% hydrocarbon, and 6.73% oxides of nitrogen emissions. Furthermore, from this study, it was inferred that the PDBD20 blend could be used as an alternative fuel for CI engines with no modi?cations in engine design.  相似文献   

17.
In this study, a substitute fuel for diesel engines was produced from inedible animal tallow and its usability was investigated as pure biodiesel and its blends with petroleum diesel fuel in a diesel engine. Tallow methyl ester as biodiesel fuel was prepared by base-catalyzed transesterification of the fat with methanol in the presence of NaOH as catalyst. Fuel properties of methyl ester, diesel fuel and blends of them (5%, 20% and 50% by volume) were determined. Viscosity and density of fatty acid methyl ester have been found to meet ASTM D6751 and EN 14214 specifications. Viscosity and density of tallow methyl esters are found to be very close to that of diesel. The calorific value of biodiesel is found to be slightly lower than that of diesel. An experimental study was carried out in order to investigate of its usability as alternative fuel of tallow methyl ester in a direct injection diesel engine. It was observed that the addition of biodiesel to the diesel fuel decreases the effective efficiency of engine and increases the specific fuel consumption. This is due to the lower heating value of biodiesel compared to diesel fuel. However, the effective engine power was comparable by biodiesel compared with diesel fuel. Emissions of carbon monoxide (CO), oxides of nitrogen (NOx), sulphur dioxide (SO2) and smoke opacity were reduced around 15%, 38.5%, 72.7% and 56.8%, respectively, in case of tallow methyl esters (B100) compared to diesel fuel. Besides, the lowest CO, NOx emissions and the highest exhaust temperature were obtained for B20 among all other fuels. The reductions in exhaust emissions made tallow methyl esters and its blends, especially B20 a suitable alternative fuel for diesel and thus could help in controlling air pollution. Based on this study, animal tallow methyl esters and its blends with petroleum diesel fuel can be used a substitute for diesel in direct injection diesel engines without any engine modification.  相似文献   

18.
Several research works have been carried out on biodiesel combustion, performance and emissions till today. But very few studies have been made about the chemistry of biodiesel that affects the diesel engine operation. Biodiesel is derived from vegetable oil or animal fats, which comprises of several fatty acids with different chain length and bonding. The present work focuses on the effect of biodiesel molecular weight, structure (Cis & Trans), and the number of double bonds on the diesel engine operation characteristics. Three types of biodiesel with different molecular weight and number of double bond were selected for the experimental studies. The biodiesels were prepared and analyzed for fuel properties according to the standards. A constant speed diesel engine, which develops 4.4 kW of power, was run with biodiesels and its performance was compared with diesel fuel. The results show that Linseed oil methyl ester with high linolenic (unsaturated fatty acid ester) does not suit best for diesel engine due to high oxides of nitrogen emission and low thermal efficiency.  相似文献   

19.
In this study, the exhaust emissions of an unmodified diesel engine fueled with methyl ester of waste frying palm-oil (biodiesel) and its blends with petroleum based diesel fuel (PBDF) were investigated at the full load-variable speed condition. The relationships between the fuel properties and the air–fuel equivalence ratio, fuel line pressure, start of injection (SOI) timing, and ignition delay were also discussed to explain their effects on the emissions. The obtained test results were compared with the reference values which were determined by using PBDF. The results showed that when biodiesel was used in the test engine, the fuel line pressure increased while air–fuel equivalence ratio and ignition delay decreased. These behaviors affected the combustion phenomena of biodiesel which caused to reduction 57% in carbon monoxide (CO) emission, about 40% in unburned hydrocarbon (HC) emission and about 23% in smoke opacity when compared with PBDF. However, NOx and CO2 emissions of the biodiesel have showed different behaviors in terms of the engine speed.  相似文献   

20.
The present study was set to explore the effect of a novel soluble hybrid nanocatalyst in diesel/biodiesel fuel blends on exergetic performance parameters of a DI diesel engine. Experiments were carried out using two types of diesel/biodiesel blends (i.e., B5 and B20) at four concentrations (0, 30, 60 and 90 ppm) of the hybrid nanocatalyst, i.e., cerium oxide immobilized on amide-functionalized multiwall carbon nanotubes (MWCNT). Furthermore, the exergy analysis was performed at five different loads and two engine speeds. The results obtained revealed that the exergetic parameters were profoundly influenced by engine speed and load. In general, increasing engine speed and load increased the magnitude of the destructed exergy. Moreover, the exergy efficiency increased by increasing engine load, while it decreased by elevating engine speed. However, the applied fuel blends had approximately similar exergetic efficiency and sustainability index. Interestingly, a remarkable reduction in emissions was obtained by incorporating the soluble catalyst nanoparticles to the diesel/biodiesel blends. Thus, it could be concluded that the diesel/biodiesel blends containing amide-functionalized MWCNTs-CeO2 catalyst might substitute the use of pure diesel fuel without any unfavorable change in the exergetic performance parameters of the DI engines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号