首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This article reviews the hierarchical optimized link state routing (HOLSR) mechanism for heterogeneous mobile ad hoc networks. In this work a heterogeneous mobile ad hoc network is defined as a network of mobile nodes that are characterized by different communications capabilities, such as multiple radio interfaces. The article focuses on proposing the HOLSR protocol. The HOLSR mechanism is derived from the OLSR protocol; however, unlike OLSR, the HOLSR protocol takes advantage of different mobile node capabilities to reduce the routing control overhead in large heterogeneous ad hoc networks, thus improving the performance of the routing mechanism.  相似文献   

2.
One of the important aspects of a mobile ad hoc network (MANET) is the limitation of the amount of available energy and the network lifetime. The tremendous amount of using mobile nodes in wireless communication medium makes energy efficiency a fundamental requirement for MANETs. In this paper, we propose a novel energy aware clustering algorithm for the optimized link state routing (OLSR) routing protocol. This algorithm takes into account the node density and mobility and gives major improvements regarding the number of elected cluster heads. Our objective is to elect a reasonable number of cluster heads that will serve for hierarchical routing based on OLSR. The proposed algorithm aims to increase the network lifetime by considering the ad hoc residual energy while taking routing decisions. It also optimizes the delay of carried flows by adopting a selective forwarding approach based on a hierarchical routing model.  相似文献   

3.
Use of multiple orthogonal channels can significantly improve network throughput of multi-hop wireless mesh networks (WMNs). In these WMNs where multiple channels are available, channel assignment is done either in a centralized manner, which unfortunately shows a poor scalability with respect to the increase of network size, or in a distributed manner, where at least one channel has to be dedicated for exchanging necessary control messages or time synchronization has to be utilized for managing the duration of data packet transmission, causing excessive system overhead and waste of bandwidth resource. In this paper, we first formulate multi-channel assignment as a NP-hard optimization problem. Then a distributed, heuristic temporal-spatial multi-channel assignment and routing scheme is proposed, assuming every wireless node in the network is equipped with a single-radio interface. Here the gateway node is set to use all the channels sequentially in a round-robin fashion. This temporal scheme ensures all the nodes that need to directly communicate with the gateway node shall have a fair access to it. For those non-gateway nodes, a spatial scheme where channels are assigned based on their neighbors’ channel usage is adopted to exploit parallel communications and avoid channel interference among nodes. Furthermore, since the routing factors, including channel usage of neighbor nodes, node hop count, node memory size, and node communication history, are all considered along with the channel assignment, network performance, measured by packet delivery latency, channel usage ratio, and memory usage ratio, tends to be considerably enhanced. The simulation results have confirmed that, compared with a couple of well-known multi-channel assignment schemes, such as LCM [21] and ROMA [15], the proposed scheme shows substantial improvement in network throughput with a very modest collision level. In addition, the proposed scheme is highly scalable as the algorithm complexity is only linearly dependent on the total number of channels that are available in the network and the number of neighbors that a network node directly connects to.  相似文献   

4.
Efficient on-demand routing for mobile ad hoc wireless access networks   总被引:2,自引:0,他引:2  
In this paper, we consider a mobile ad hoc wireless access network in which mobile nodes can access the Internet via one or more stationary gateway nodes. Mobile nodes outside the transmission range of the gateway can continue to communicate with the gateway via their neighboring nodes over multihop paths. On-demand routing schemes are appealing because of their low routing overhead in bandwidth restricted mobile ad hoc networks, however, their routing control overhead increases exponentially with node density in a given geographic area. To control the overhead of on-demand routing without sacrificing performance, we present a novel extension of the ad hoc on-demand distance vector (AODV) routing protocol, called LB-AODV, which incorporates the concept of load-balancing (LB). Simulation results show that as traffic increases, our proposed LB-AODV routing protocol has a significantly higher packet delivery fraction, a lower end-to-end delay and a reduced routing overhead when compared with both AODV and gossip-based routing protocols.  相似文献   

5.
任智  朱其政  付泽亮  周舟  周杨 《电讯技术》2023,63(10):1546-1552
优化链路状态路由(Optimized Link State Routing,OLSR)协议是一种先验式路由协议,网络中的所有节点通过周期性地发送控制消息来计算全网路由信息。在短波自组织网络中,节点周期性地发送控制消息会占据大量的信道资源,大幅增加网络的控制开销,浪费短波有限的带宽资源,导致网络通信性能急剧下降。其次,受到地形地貌、天线方向和接收性能的个体差异等影响,造成无线链路不稳定,导致网络中存在非对称链路,增加了通信端到端时延。为此,提出了一种低时延的短波自组网OLSR协议。该协议在执行MPR(Multipoint Relay)选择算法时综合考虑了节点的连接度和链路可靠性,在优化MPR节点个数的同时选择链路可靠性较大的节点作为MPR节点,在进行路由选择时能够利用网络中的非对称链路。仿真结果表明,该协议能优化数据包投递成功率、吞吐量、端到端时延和网络控制开销等性能指标。  相似文献   

6.
Wireless mesh networks (WMNs) have been the recent advancements and attracting more academicians and industrialists for their seamless connectivity to the internet. Radio resource is one among the prime resources in wireless networks, which is expected to use in an efficient way especially when the mobile nodes are on move. However, providing guaranteed quality of service to the mobile nodes in the network is a challenging issue. To accomplish this, we propose 2 clustering algorithms, namely, static clustering algorithm for WMNs and dynamic clustering algorithm for WMNs. In these algorithms, we propose a new weight‐based cluster head and cluster member selection process for the formation of clusters. The weight of the nodes in WMN is computed considering the parameters include the bandwidth of the node, the degree of node connectivity, and node cooperation factor. Further, we also propose enhanced quality of service enabled routing protocol for WMNs considering the delay, bandwidth, hopcount, and expected transmission count are the routing metrics. The performance of the proposed clustering algorithms and routing protocol are analyzed, and results show high throughput, high packet delivery ratio, and low communication cost compared with the existing baseline mobility management algorithms and routing protocols.  相似文献   

7.
Mobile ad hoc networks (MANETs) are dynamic wireless networks that have no fixed infrastructures and do not require predefined configurations. In this infrastructure-less paradigm, nodes in addition of being hosts, they also act as relays and forward data packets for other nodes in the network. Due to limited resources in MANETs such as bandwidth and power, the performance of the routing protocol plays a significant role. A routing protocol in MATET should not introduce excessive control messages to the network in order to save network bandwidth and nodes power. In this paper, we propose a probabilistic approach based on Bayesian inference to enable efficient routing in MANETs. Nodes in the proposed approach utilize the broadcast nature of the wireless channel to observe the network topology by overhearing wireless transmissions at neighboring nodes in a distributed manner, and learn from these observations when taking packet forwarding decision on the IP network layer. Our simulation results show that our routing approach reduces the number of control message (routing overhead) by a ratio up to 20 % when the network size is 60 nodes, while maintaining similar average route establishment delay as compared to the ad-hoc on demand routing protocol.  相似文献   

8.
Routing in mobile ad hoc networks is a complex task due to the mobility of the nodes and the constraints linked to a wireless multihop network (e.g., limited bandwidth, collisions, and bit errors). These adverse conditions impair not only data traffic but also routing signaling traffic, which feeds route computation. In this contribution, we propose to use satellite communications to help in the distribution of mobile ad hoc network routing signaling. The optimized link‐state routing (OLSR) is chosen among several routing protocols to be extended with satellite‐based signaling, yielding a version we call OLSR hybrid signaling (OLSR‐H). This new scheme is evaluated through simulations and yields improvements of approximately 10% in the data delivery ratio compared with a regular OLSR. This evaluation is conducted using two different network topology models, one being fit for representing forest firefighting operations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Wireless mesh networks (WMNs) have emerged as one of the major technologies for 4G high-speed mobile networks. In a WMN, a mesh backhaul connects the WMN with the Internet, and mesh access points (MAPs) provide wireless network access service to mobile stations (MSs). The MAPs are stationary and connected through the wireless mesh links. Due to MS mobility in WMNs, mobility management (MM) is required to efficiently and correctly route the packets to MSs. We propose an MM mechanism named Wireless mesh Mobility Management (WMM). The WMM adopts the location cache approach, where mesh backhaul and MAPs (referred to as mesh nodes (MNs)) cache the MS's location information while routing the data for the MS. The MM is exercised when MNs route the packets. We implement the WMM and conduct an analytical model and simulation experiments to investigate the performance of WMM. We compare the signaling and routing cost between WMM and other existing MM protocols. Our study shows that WMM has light signaling overhead and low implementation cost.  相似文献   

10.
Secure group communication in wireless mesh networks   总被引:1,自引:0,他引:1  
Jing  Kurt  Cristina   《Ad hoc Networks》2009,7(8):1563-1576
Wireless mesh networks (WMNs) have emerged as a promising technology that offers low-cost community wireless services. The community-oriented nature of WMNs facilitates group applications, such as webcast, distance learning, online gaming, video conferencing, and multimedia broadcasting. Security is critical for the deployment of these services. Previous work focused primarily on MAC and routing protocol security, while application-level security has received relatively little attention. In this paper we focus on providing data confidentiality for group communication in WMNs. Compared to other network environments, WMNs present new challenges and opportunities in designing such protocols. We propose a new protocol framework, Secure Group Overlay Multicast (SeGrOM), that employs decentralized group membership, promotes localized communication, and leverages the wireless broadcast nature to achieve efficient and secure group communication. We analyze the performance and discuss the security properties of our protocols. We demonstrate through simulations that our protocols provide good performance and incur a significantly smaller overhead than a baseline centralized protocol optimized for WMNs.  相似文献   

11.
In this paper we propose a new broadcasting algorithm. In the proposed method we significantly reduce the broadcast overhead and also improve the broadcast delivery ratio in mobile networks. A novel traffic isolation method has been used which reduces the control message exchange. The proposed broadcasting method is based on a clustering method called ‘stability‐based clustering algorithm’ which had been proposed before. The broadcasting traffic is divided into internal (flow inside a cluster) and external traffic (flow among the clusters). For internal flooding traffic, cluster‐heads and gateways are responsible for re‐broadcasting but for external type, border nodes may perform the forwarding function as well. This simplifies the gateway selection method through the local selection of gateway nodes by its cluster head. Therefore, a cluster head selects gateway in its own cluster without any knowledge of other clusters. Considering the effect of mobility and node density, simulations have been conducted in a number of wireless environments. Simulation results show the broadcast coverage is close to 100% at different node speeds. Moreover, we study the broadcast parameters in light and dense networks and show improvement of the overhead and the number of forward nodes in comparison to other broadcasting methods. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Admission control (AC) is a mechanism for meeting bandwidth requirements of data transmissions. Early research on admission control for wireless mesh networks (WMNs) was centered around single-path routing. Compared to single-path routing, parallel multipath routing may offer more reliable network services and better load balancing. Applying admission control to multipath routing could further improve service quality, but it also faces a number of challenges. For example, transmission on one path may affect transmission on a neighboring path. Addressing these challenges, this paper presents an AC algorithm on parallel multipath routing for WMNs. In particular, we formulate an optimization problem for achieving the best service based on available bandwidth and bandwidth consumption of to-be-admitted data sessions. While solving this problem is a complex task, we devise an optimal algorithm for selecting two node-disjoint paths with rate allocation, and propose a distributed multipath routing and admission control protocol to achieve a near-optimal solution. Simulations show that MRAC is efficient and effective in meeting bandwidth requirements.  相似文献   

13.
Trends in fourth generation (4G) wireless networks are clearly identified by the full-IP concept where all traffic (data, control, voice and video services, etc.) will be transported in IP packets. Many proposals are being made to enhance IP with the functionalities necessary to manage the mobility of nodes, so that networks can provide global seamless roaming between heterogeneous wireless and wired networks. In this paper, we focus on the management of universal mobility, including both large scale macro-mobility and local scale micro-mobility. We propose a hierachical architecture (i) extending micro-mobility management of a wireless access network to an ad-hoc access network, (ii) connecting this ad-hoc network to the Internet and (iii) integrating Mobile IP and OLSR, a routing protocol for ad-hoc networks, to manage universal mobility. This architecture is validated by an implementation based on DynamicsMobile-IP and OLSR version 7. We show how the brodcast of Mobile-IP Agent Advertisement can be optimized using OLSR MPR-flooding.  相似文献   

14.
We propose and analyze a class of integrated social and quality of service (QoS) trust-based routing protocols in mobile ad-hoc delay tolerant networks. The underlying idea is to incorporate trust evaluation in the routing protocol, considering not only QoS trust properties but also social trust properties to evaluate other nodes encountered. We prove that our protocol is resilient against bad-mouthing, good-mouthing and whitewashing attacks performed by malicious nodes. By utilizing a stochastic Petri net model describing a delay tolerant network consisting of heterogeneous mobile nodes with vastly different social and networking behaviors, we analyze the performance characteristics of trust-based routing protocols in terms of message delivery ratio, message delay, and message overhead against connectivity-based, epidemic and PROPHET routing protocols. The results indicate that our trust-based routing protocols outperform PROPHET and can approach the ideal performance obtainable by epidemic routing in delivery ratio and message delay, without incurring high message overhead. Further, integrated social and QoS trust-based protocols can effectively trade off message delay for a significant gain in message delivery ratio and message overhead over traditional connectivity-based routing protocols.  相似文献   

15.
As Wireless Mesh Networks (WMNs) are typically used for Internet access, most traffic is routed through the gateways which connect WMN to the wired network. As a result, the gateways tend to get congested and balancing of the traffic load of gateways is critical. In this paper, we consider applications that require continuous provision of a certain bandwidth to a server located at the wired network. If a path that satisfies the bandwidth request cannot be found, the request will be rejected, so that load imbalance will result underutilization of the network capacity. We present a novel load balancing routing algorithm for maximizing the network utilization (i.e., accommodating service requests as many as possible) for multi-gateway WMNs. In the proposed scheme, a WMN is divided into domains. Each domain is served by one gateway, so that all traffic of a domain is served by the corresponding gateway. Our scheme determines routing to balance the traffic load among domains, and then performs load balancing routing within each domain. Simulation results show that in square grid topologies, our intra-domain routing achieves near optimal performance with about 70% less overhead than the existing schemes. Our inter-domain load balancing scheme outperforms the existing heuristics by up to 25% while achieving about 80% performance of the optimal solution.  相似文献   

16.
卿利 《电讯技术》2019,59(9):1020-1025
空中异构战术无线网络由多种不同类型的无线数据链网络构成,IP通信技术可有效解决空中平台异构无线网络的互联互通问题。给出了空中异构战术无线网络模型,并根据不同类型的无线数据链网络特点,分析了端到端通信协议栈关系以及不同无线数据链网络间协议转换与适配方式。探讨了网络静态和动态IP地址分配方法以及网络的路由架构与寻址方式,提出了不同无线数据链网络间IP报文传输的打包方式。对传输的开销性能仿真对比分析表明,基于通用成帧协议的打包方式的协议开销性能较优。  相似文献   

17.
This paper addresses the problem of efficient routing in backbone wireless mesh networks (WMNs) where each mesh router is equipped with multiple radio interfaces and a subset of nodes serve as gateways to the Internet. Most routing schemes have been designed to reduce routing costs by optimizing one metric, e.g., hop count and interference ratio. However, when considering these metrics together, the complexity of the routing problem increases drastically. Thus, an efficient and adaptive routing scheme that takes into account several metrics simultaneously and considers traffic congestion around the gateways is needed. In this paper, we propose an adaptive scheme for routing traffic in WMNs, called Reinforcement Learning-based Distributed Routing (RLBDR), that (1) considers the critical areas around the gateways where mesh routers are much more likely to become congested and (2) adaptively learns an optimal routing policy taking into account multiple metrics, such as loss ratio, interference ratio, load at the gateways and end-to end delay. Simulation results show that RLBDR can significantly improve the overall network performance compared to schemes using either Metric of Interference and Channel switching, Best Path to Best Gateway, Expected Transmission count, nearest gateway (i.e., shortest path to gateway) or load at gateways as a metric for path selection.  相似文献   

18.
郑贵文  唐峥钊 《现代导航》2020,11(4):283-288
本文针对传统单跳无线网络(WLAN)可伸缩性低、鲁棒性差等缺点,提出了一种基于OLSR协议的无线MESH网络系统设计方法,该方法在提高对网络拓扑变化动态适应性的同时, 达到减少控制开销的目的。每个子网选择部分节点作为网络控制分组的多点中继节点(MPR), 其它邻居节点收到该节点发送的控制分组时,只进行处理而不转发,通过这种方式显著地减少了传统先应式路由协议网络拓扑信息广播的控制分组数量。每一个 MPR 节点只报告自己与其 MPR 节点之间的链路,进一步地减少了网络控制开销。该方法在城市数字化、城市无线监控等领域具有较高应用前景。  相似文献   

19.
It is a critical issue to ensure that nodes and/or flows have fair access to the network bandwidth in wireless mesh networks (WMNs). However, current WMNs based on IEEE 802.11 exhibit severe unfairness. Several scheduling schemes have been proposed to ensure fairness in WMNs. Unfortunately, all of them implicitly trust nodes in the network, and thus are vulnerable to the misbehavior of nodes participating in scheduling. In this paper, we address the threats to fair scheduling in WMNs resulting from node misbehavior and present a generic verification framework to detect such misbehavior. Moreover, we develop two verification schemes based on this framework for distributed and centralized authentication environments, respectively. We validate our approach by extending an existing fair scheduling scheme and evaluating it through simulation. The results show that our approach improves misbehavior detection with light performance overhead.  相似文献   

20.
In mesh networks architecture, it should be permitted to visit the mobile client points. Whereas in mesh networks environment, the main throughput flows usually communicate with the conventional wired network. The so‐called gateway nodes can link directly to traditional Ethernet, depending on these mesh nodes, and can obtain access to data sources that are related to the Ethernet. In wireless mesh networks (WMNs), the quantities of gateways are limited. The packet‐processing ability of settled wireless nodes is limited. Consequently, throughput loads of mesh nodes highly affect the network performance. In this paper, we propose a queuing system that relied on traffic model for WMNs. On the basis of the intelligent adaptivenes, the model considers the influences of interference. Using this intelligent model, service stations with boundless capacity are defined as between gateway and common nodes based on the largest hop count from the gateways, whereas the other nodes are modeled as service stations with certain capacity. Afterwards, we analyze the network throughput, mean packet loss ratio, and packet delay on each hop node with the adaptive model proposed. Simulations show that the intelligent and adaptive model presented is precise in modeling the features of traffic loads in WMNs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号