首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The available unlicensed spectrum is increasingly being used by new wireless technologies, but past measurements show that the licensed spectrum is extremely underutilized. To address this issue, the IEEE 802.22 Working Group is developing a novel wireless air interface standard based on cognitive radios (CRs), i.e. IEEE 802.22 wireless regional area networks (WRANs). Moreover, over the last decade wireless multimedia applications have developed rapidly, raising significant concerns about the quality of service (QoS) of multimedia stream transmissions. In particular, the Joint Video Team (JVT) and ITU‐T Video Coding Experts Group (VCEG) jointly proposed Scalable Video Coding (SVC) as the next‐generation multimedia compression standard. However, the current IEEE 802.22 WRAN draft does not specify QoS mechanisms for SVC‐encoded multimedia stream transmission in CR networks. To resolve this problem, we developed a cross‐layer channel allocation algorithm (CLCAA) and a novel media access control (MAC) protocol to work with the algorithm. The CLCAA adapts to the characteristics of multimedia traffic and variations of wireless channels by determining the weighting of source–destination pair, which is determined by the deadlines of SVC‐encoded multimedia streams, the queuing delay and channel conditions. The CLCAA then allocates transmission opportunities to source–destination pairs based on their weightings and game theory. We also conducted extensive simulations to demonstrate the efficiency of the CLCAA scheme. The simulation results show that the CLCAA scheme not only guarantees QoS for multimedia traffic but also achieves fairness across different streams. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
IEEE 802.11 protocol supports adaptive rate mechanism, which selects the transmission rate according to the condition of the wireless channel, to enhance the system performance. Thus, research of multi‐rate IEEE 802.11 medium access control (MAC) performance has become one of the hot research topics. In this paper, we study the performance of multi‐rate IEEE 802.11 MAC over a Gaussian channel. An accurate analytical model is presented to compute the system saturation throughput. We validate our model in both single‐rate and multi‐rate networks through various simulations. The results show that our model is accurate and channel error has a significant impact on system performance. In addition, our numerical results show that the performance of single‐rate IEEE 802.11 DCF with basic access method is better than that with RTS/CTS mechanism in a high‐rate and high‐load network and vice versa. In a multi‐rate network, the performance of IEEE 802.11 DCF with RTS/CTS mechanism is better than that with basic access method in a congested and error‐prone wireless environment. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents an analytical approach to model the bi‐directional multi‐channel IEEE 802.11 MAC protocols (Bi‐MCMAC) for ad hoc networks. Extensive simulation work has been done for the performance evaluation of IEEE 802.11 MAC protocols. Since simulation has several limitations, this work is primarily based on the analytical approach. The objective of this paper is to show analytically the performance advantages of Bi‐MCMAC protocol over the classical IEEE 802.11 MAC protocol. The distributed coordination function (DCF) mode of medium access control (MAC) is considered in the modeling. Two different channel scheduling strategies, namely, random channel selection and fastest channel first selection strategy are also presented in the presence of multiple channels with different transmission rates. M/G/1 queue is used to model the protocols, and stochastic reward nets (SRNs) are employed as a modeling technique as it readily captures the synchronization between events in the DCF mode of access. The average system throughput, mean delay, and server utilization of each MAC protocol are evaluated using the SRN formalism. We also validate our analytical model by comparison with simulation results. The results obtained through the analytical modeling approach illustrate the performance advantages of Bi‐MCMAC protocols with the fastest channel first scheduling strategy over the classical IEEE 802.11 protocol for TCP traffic in wireless ad hoc networks. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
The next‐generation packet‐based wireless cellular network will provide real‐time services for delay‐sensitive applications. To make the next‐generation cellular network successful, it is critical that the network utilizes the resource efficiently while satisfying quality of service (QoS) requirements of real‐time users. In this paper, we consider the problem of power control and dynamic channel allocation for the downlink of a multi‐channel, multi‐user wireless cellular network. We assume that the transmitter (the base‐station) has the perfect knowledge of the channel gain. At each transmission slot, a scheduler allots the transmission power and channel access for all the users based on the instantaneous channel gains and QoS requirements of users. We propose three schemes for power control and dynamic channel allocation, which utilize multi‐user diversity and frequency diversity. Our results show that compared to the benchmark scheme, which does not utilize multi‐user diversity and power control, our proposed schemes substantially reduce the resource usage while explicitly guaranteeing the users' QoS requirements. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Recent advances in microelectronics have encouraged the implementation of a wireless sensor network (WSN) in intelligent monitoring systems (IMSs). The IMS for time‐critical applications requires timely and reliable data delivery without sacrificing the energy efficiency of the network. This paper proposes FPS‐MAC, a fuzzy priority scheduling‐based medium access control protocol, designed for event critical traffic in hierarchical WSN. The FPS‐MAC allows time‐critical event traffic to opportunistically steal the data slots allocated for periodic data traffic in event‐based situations. Additionally, a fuzzy logic‐based slot scheduling mechanism is introduced to provide guaranteed and timely medium access to emergency traffic load and ensures the quality‐of‐service (QoS) requirements of IMSs. Both analytical and simulation results for data throughput, energy consumption, and transmission delay of FPS‐MAC, TLHA, E‐BMA, and BMA‐RR have been analyzed to demonstrate the superiority of the proposed FPS‐MAC protocol.  相似文献   

6.
Wireless USB (WUSB) is the USB technology merged with WiMedia PHY/MAC based on success of wired USB, and it can be applied to various mobile applications such as laptop, cellular phone, etc. Also, WUSB can provide the better user convenience than wired USB applications as well as be applied to the legacy USB application, since it provides high speed connection between host and devices for the compatibility with USB 2.0 specification and removes the cable among devices using the USB protocol. However the current WUSB protocol can’t prevent the QoS degradation occurred by mobile nodes with low data rate. This problem causes the critical problems in QoS provisioning to isochronous streams and mobile applications. Therefore, we propose a new cooperative MAC protocol for WUSB network with virtual MIMO (multi input multi output) link. Based on instantaneous channel state information among WUSB devices, our proposed protocol can intelligently select the transmission path with higher data rate between WUSB host and WUSB device as well as between WUSB device and WUSB device. Thus our proposed protocol can provide advanced QoS with minimum delay for real-time multimedia services.  相似文献   

7.
Spatial diversity in wireless networks can be attained by exploiting the broadcast nature of wireless transmission without the need of multiple antennas in individual device, leading to the implementation of cooperative communication. While most prior works focused on the single source—destination scenario, it should be more realistic to consider how to induce cooperation among multiple source‐destination pairs assisted by multiple relays. In such a case, multiple access interference (MAI) may present due to asynchronous transmissions of the users and relays. In this paper, a cooperative network architecture based on orthogonal complementary (OC) codes inherently immune to MAI is proposed. To efficiently utilize the scarce radio spectrum and codes, a centralized medium access control (MAC) protocol is proposed to coordinate the code assignment and channel access among users and relays. We theoretically analyze the bit error rate (BER) performance of the proposed OC coded cooperative network over multipath Rayleigh fading channel. The performance gain resulted from different numbers of relays is investigated, and compared with a time division multiple access (TDMA) based cooperative scheme. We show that the proposed OC coded cooperative network performs well in the presence of timing offset, and thus is well suited for asynchronous uplink transmission with cooperative relaying. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The IEEE 802.11 wireless local area network (WLAN) media access control (MAC) specification is a hybrid protocol of random access and polling when both distributed coordination function (DCF) and point coordination function (PCF) are used. Data traffic is transmitted with the DCF, while voice transmission is carried out with the PCF. Based on the performance analysis of the MAC protocol for integrated data and voice transmission by simulation, this paper puts forward a self‐adaptive transmission scheme to support multi‐service over the IEEE 802.11 WLAN. The simulation results show that, on the premise of satisfying the maximum allowable delay of packet voice, the self‐adaptive transmission scheme can improve the data traffic performance and increase the WLAN capacity through dynamic and appropriate adjustment of the protocol parameters. Especially, voice traffic is sensitive to delay jitter, and the self‐adaptive scheme can effectively decrease it. Finally, it is worth noting that the adaptive scheme is easy to be realized, whereas no change in the MAC protocol is needed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
陈前斌  刘剑  酆勇  唐伦 《通信学报》2013,34(9):53-60
针对无线ad hoc网络中协作造成的中继效率低以及不同QoS需求难以满足等问题,提出了一种联合网络编码和空时编码的协作MAC协议(NSTCMAC)。NSTCMAC将网络编码与空时编码技术相结合,设计出区分业务类型的协作MAC协议传输机制,以满足不同业务类型的QoS需求;进一步通过马尔科夫链模型分析了区分业务类型的协作机制及性能。仿真结果表明,相比传统的DCF、COOPMAC以及CD-MAC协议,NSTCMAC协议能更好地保证不同的QoS需求,并能有效地解决协作造成的中继效率低的问题。  相似文献   

10.
The demand for multimedia services, such as voice over Internet Protocol, video on demand, information dissemination, and ?le sharing, is increasing explosively in wireless local area networks. These multimedia services require a certain level of QoS. Thus, it is important to provide QoS for multimedia applications. IEEE 802.11e tries to meet the QoS requirement of multimedia services by using Enhanced Distributed Channel Access. This gives more weights to high‐priority tra?c than low‐priority tra?c in accessing the wireless channel. However, Enhanced Distributed Channel Access suffers from many problems such as low aggregate throughput, high collision rates, and ineffective QoS differentiation among priority classes. In this paper, we propose a new medium access scheme, the Arbitration Interframe Space‐controlled Medium Access Control (AC‐MAC), that guarantees absolute priority in 802.11 wireless networks. In AC‐MAC, the AIFS and contention window values are controlled, so that a higher‐priority tra?c can preferentially access and effectively utilize the channel. Extensive simulations show that AC‐MAC can perfectly provide absolute priority and good throughput performance regardless of the number of contending nodes. In the simulation of voice over Internet Protocol service, AC‐MAC provides effective QoS differentiation among services and also meets the high level of QoS requirements. AC‐MAC also adapts quickly in a dynamic environment and provides good fairness among the nodes belonging to the same priority class. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
In next generation wireless communication, cognitive radio technology facilitates to utilize underutilized licensed frequency bands that help to enhance the spectrum utilization. Cognitive radio wireless mesh network (CRWMN) is a promising and reliable technology to experience high throughput with low cost. Existing IEEE 802.11 based medium access control (MAC) protocols offer high data rates with decreasing efficiency at the MAC layer. Hence, most of the researchers applied aggregation mechanisms to provide the solution to bandwidth craving applications. In CRWMN, MAC design is significant because stability, efficient resource utilization, and scalability are predominating problems; however, the specified MAC issues are not yet resolved. The proposed MAC is novel, which aims to ensure reliability and scalability for CRWMN. The common control channel is used to exchange handshaking frames between the transmitter and receiver. It helps us to schedule the data transmission as well as reserve the channel in a discrete time interval. It introduces a token‐based channel accessing mechanism with resource‐aware channel assignment, which resolves the problems of efficiency and stability. The proposed MAC simulated using the network simulator (ns‐2), and the simulation results demonstrate that the proposed protocol improved the performance compared with the existing protocols.  相似文献   

12.
Multi‐hop communications equipped with parallel relay nodes is an emerging network scenario visible in environments with high node density. Conventional interference‐free medium access control (MAC) has little capability in utilizing such parallel relays because it essentially prohibits the existence of co‐channel interference and limits the feasibility of concurrent communications. This paper aims at presenting a cooperative multi‐input multi‐output (MIMO) space division multiple access (SDMA) design that uses each hop's parallel relay nodes to improve multi‐hop throughput performance. Specifically, we use MIMO and SDMA to enable concurrent transmissions (from multiple Tx nodes to single/multiple Rx nodes) and suppress simultaneous links' co‐channel interference. As a joint physical layer (MAC/PHY) solution, our design has multiple MAC modules including load balancing that uniformly splits traffic packets at parallel relay nodes and multi‐hop scheduling taking co‐channel interference into consideration. Meanwhile, our PHY layer modules include distributive channel sounding that exchanges channel information in a decentralized manner and link adaptation module estimating instantaneous link rate per time frame. Simulation results validate that compared with interference‐free MAC or existing Mitigating Interference using Multiple Antennas (MIMA‐MAC), our proposed design can improve end‐to‐end throughput by around 30% to 50%. In addition, we further discuss its application on extended multi‐hop topology. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
To compensate for the effects of fading in wireless channels, IEEE 802.11 systems utilize a rate‐adaptation mechanism to accomplish a multi‐rate capability. However, the IEEE 802.11 distributed coordination function results in a fundamental performance anomaly in multi‐rate networks; namely, when stations with different transmission rates collide, the throughput performance of the high‐rate station is significantly degraded by the relatively longer channel occupancy time of the low‐rate station. This study resolves this problem through the use of an enhanced high‐performance distributed coordination function (EHDCF) protocol. While most existing solutions to the multi‐rate performance anomaly problem have the form of simple contention‐based protocols, EHDCF has two modes, namely a contending mode and an active mode. In the proposed protocol, new stations joining the network are assigned a contending mode, but switch to an active node (and are therefore permitted to transmit data packets) as soon as they have gained access to the channel. Having transmitted a data packet, the active node then selects the next transmission station in accordance with a probability‐based rule designed such that the high‐rate stations within the network receive a greater number of transmission opportunities than the low‐rate stations. The simulation results show that the EHDCF protocol not only yields a significant improvement in the network throughput but also guarantees the temporal fairness of all the stations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
In the IEEE 802.11 wireless LAN (WLAN), the fundamental medium access control (MAC) mechanism—distributed coordination function (DCF), only supports best‐effort service, and is unaware of the quality‐of‐service (QoS). IEEE 802.11e enhanced distributed channel access (EDCA) supports service differentiation by differentiating contention parameters. This may introduce the problem of non‐cooperative service differentiation. Hence, an incompletely cooperative EDCA (IC‐EDCA) is proposed in this paper to solve the problem. In IC‐EDCA, each node that is cooperative a priori adjusts its contention parameters (e.g., the contention window (CW)) adaptively to the estimated system state (e.g., the number of competing nodes of each service priority). To implement IC‐EDCA in current WLAN nodes, a frame‐analytic estimation algorithm is presented. Moreover, an analytical model is proposed to analyze the performance of IC‐EDCA under saturation cases. Extensive simulations are also carried out to compare the performances of DCF, EDCA, incompletely cooperative game, and IC‐EDCA, and to evaluate the accuracy of the proposed performance model. The simulation results show that IC‐EDCA performs better than DCF, EDCA, and incompletely cooperative game in terms of system throughput or QoS, and that the proposed analytical model is valid. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
With the pervasive growth in the popularity of IEEE 802.11‐based wireless local area networks (WLANs) worldwide, the demand to support delay‐sensitive services such as voice has increased very rapidly. This paper provides a comprehensive survey on the medium access control (MAC) architectures and quality of service (QoS) provisioning issues for WLANs. The major challenges in providing QoS to voice services through WLAN MAC protocols are outlined and the solution approaches proposed in the literature are reviewed. To this end, a novel QoS‐aware wireless MAC protocol, called hybrid contention‐free access (H‐CFA) protocol and a call admission control technique, called traffic stream admission control (TS‐AC) algorithm, are presented. The H‐CFA protocol is based on a novel idea that combines two contention‐free wireless medium access approaches, that is, round‐robin polling and time‐division multiple access (TDMA)‐like time slot assignment, and it increases the capacity of WLANs through efficient silence suppression. The TS‐AC algorithm ensures efficient admission control for consistent delay‐bound guarantees and further maximizes the capacity through exploiting the voice characteristic that it can tolerate some level of inconsecutive packet loss. The benefits of the proposed schemes are demonstrated in the simulations results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
To design a reliable and energy efficient medium access control (MAC) protocol for underwater wireless sensor networks (UWSNs) is an active research area due to its variety of applications. There are many issues associated with underwater acoustic channels including long and variable propagation delay, attenuation, and limited bandwidth which pose significant challenges in the design of MAC protocol. The available sender‐initiated asynchronous preamble‐based MAC protocols for UWSNs are not reliable and energy‐efficient. This is due to the problems caused by transmission of preambles for longer duration and collision of preambles from hidden nodes in sender‐initiated preamble‐based MAC protocols. To resolve these issues, the paper proposed an asynchronous receiver‐initiated preamble‐based MAC protocol named Receiver Preambling with Channel Polling MAC (RPCP‐MAC) protocol for shallow underwater monitoring applications with high data rates. The protocol is proposed to resolve data packet collision and support reliability in an energy‐efficient way without using any transmission schedule. The proposed protocol is based on the following mechanisms. Firstly, receiver preambling mechanism is adopted to reduce idle listening. Secondly, channel polling mechanism is used to determine missing data frame during its sleeping period and to minimize the active time of node and reduces energy wastage. Finally, a back‐off mechanism is applied to resolve collision when preambles are received simultaneously. In addition, performance analysis through Markov chain together with its validation with simulation‐based studies is reported in the paper. Both the analytical and simulation results have demonstrated the reliability achievable with RPCP‐MAC while providing good energy efficiency.  相似文献   

17.
A Carrier‐sense‐assisted adaptive learning MAC protocol for wireless LANs, capable of operating efficiently in bursty traffic wireless networks with unreliable channel feedback, is introduced. According to the proposed protocol, the mobile station that is granted permission to transmit is selected by means of learning automata. At each station, the learning automaton takes into account the network feedback information in order to update the choice probability of each mobile station. The proposed protocol utilizes carrier sensing in order to reduce the collisions that are caused by different decisions at the various mobile stations due to the unreliable channel feedback. Simulation results show satisfactory performance of the proposed protocol compared to similar MAC protocols. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
Previous quality‐of‐service (QoS) routing protocols in mobile ad hoc networks (MANETs) determined bandwidth‐satisfied routes for QoS applications. Since the multi‐rate enhancements have been implemented in MANETs, QoS routing protocols should be adapted to exploit them fully. However, existing works suffer from one bandwidth‐violation problem, named the hidden route problem (HRP), which may arise when a new flow is permitted and only the bandwidth consumption of the hosts in the neighborhood of the route is computed. Without considering the bandwidth consumption to ongoing flows is the reason the problem is introduced. This work proposes a routing protocol that can avoid HRP for data rate selection and bandwidth‐satisfied route determination with an efficient cross‐layer design based on the integration of PHY and MAC layers into the network layer. To use bandwidth efficiently, we aim to select the combination of data rates and a route with minimal bandwidth consumption to the network, instead of the strategy adopted in the most previous works by selecting the combination with the shortest total transmission time. Using bandwidth efficiently can increase the number of flows supported by a network. Copyright 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Design of an efficient wireless medium access control (MAC) protocol is a challenging task due to the time‐varying characteristics of wireless communication channel and different delay requirements in diverse applications. To support variable number of active stations and varying network load conditions, random access MAC protocols are employed. Existing wireless local area network (WLAN) protocol (IEEE 802.11) is found to be inefficient at high data rates because of the overhead associated with the contention resolution mechanism employed. The new amendments of IEEE 802.11 that support multimedia traffic (IEEE 802.11e) are at the expense of reduced data traffic network efficiency. In this paper, we propose a random access MAC protocol called busy tone contention protocol (BTCP) that uses out‐of‐band signals for contention resolution in WLANs. A few variants of this protocol are also proposed to meet the challenges in WLAN environments and application requirements. The proposed BTCP isolate multimedia traffics from background data transmissions and gives high throughput irrespective of the number of contending stations in the network. As a result, in BTCP, admission control of multimedia flows becomes simple and well defined. Studies of the protocol, both analytically and through simulations under various network conditions, have shown to give better performance in comparison with the IEEE 802.11 distributed coordination function. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
The emerging vehicular networks are targeted to provide efficient communications between mobile vehicles and fixed roadside units (RSU), and support mobile multimedia applications and safety services with diverse quality of service (QoS) requirements. In this paper, we propose a busy tone based medium access control (MAC) protocol with enhanced QoS provisioning for life critical safety services. By using busy tone signals for efficient channel preemption in both contention period (CP) and contention free period (CFP), emergency users can access the wireless channel with strict priority when they compete with multimedia users, and thus achieve the minimal access delay. Furthermore, through efficient transmission coordination on the busy tone channel, contention level can be effectively reduced, and the overall network resource utilization can be improved accordingly. We then develop an analytical model to quantify the medium access delay of emergency messages. Extensive simulations with Network Simulator (NS)-2 validate the analysis and demonstrate that the proposed MAC can guarantee reliable and timely emergency message dissemination in a vehicular network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号