首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of the properties of ThO2 and (U, Th)O2 powders, prepared with different technological regimes, on the properties of the finished items is investigated. The work includes detailed investigations of ThO2 and (U, Th)O2 powders (x-ray phase analysis, electron-microscope investigation) and sintered fuel pellets (determination of density, study of microstructure, thermophysical investigations). The temperature dependences of the crystal lattice parameters and the sizes of the crystallites in ThO2 and (U, Th)O2 powders with different UO2:ThO2 ratio are obtained. The temperature dependences of the thermal conductivity of sintered ThO2 and (U, Th)O2 pellets with different UO2:ThO2 ratio are studied.  相似文献   

2.
I. S. Kurina 《Atomic Energy》1999,86(3):189-195
It has been determined at the State Scientific Center of the Russian Federation—Physics and Power Engineering Institute in the course of developing a technology for fabricating various fuel compositions (UO2+MgO, UO2+ThO2, UO2+Th+ThO2, PuO2+MgO, UO2+Fe+MgO, PuO2+BaO, and others) for fast-neutron and light-water reactors that structural changes in particle aggolmerates occur at the heat-treatment stage. The optimal properties of the powders are obtained at the temperature of the morphological transformations of the particles. The fuel pellets prepared from these powders possess stable density, porosity, exterior form, mechanical strength, and so on. The total specific surface area of the oxides is an indirect parameter for estimating their quality. Each fuel composition has its own optimal powder heat-temperature temperature. 7 figures, 1 table, 5 references. State Scientific Center of the Russian Federation—A. I. Leipunskii Physics and Power-Engineering Institute. Translated from Atomnaya énergiya, Vol. 86, No. 3, pp. 189–194, March, 1999.  相似文献   

3.
Impregnated Agglomerate Pelletization (IAP) technique has been developed at Advanced Fuel Fabrication Facility (AFFF), BARC, Tarapur, for manufacturing (Th,233U)O2 mixed oxide fuel pellets, which are remotely fabricated in hot cell or shielded glove box facilities to reduce man-rem problem associated with 232U daughter radionuclides. This technique is being investigated to fabricate the fuel for Indian Advanced Heavy Water Reactor (AHWR). In the IAP process, ThO2 is converted to free flowing spheroids by powder extrusion route in an unshielded facility which are then coated with uranyl nitrate solution in a shielded facility. The dried coated agglomerate is finally compacted and then sintered in oxidizing/reducing atmosphere to obtain high density (Th,U)O2 pellets. In this study, fabrication of (Th,U)O2 mixed oxide pellets containing 3–5 wt.% UO2 was carried out by IAP process. The pellets obtained were characterized using optical microscopy, XRD and alpha autoradiography. The results obtained were compared with the results for the pellets fabricated by other routes such as Coated Agglomerate Pelletization (CAP) and Powder Oxide Pelletization (POP) route.  相似文献   

4.
The incorporation of gadolinium directly into nuclear fuel is important regarding reactivity compensation, which enables longer fuel cycles. The incorporation of Gd2O3 powder directly into the UO2 powder by dry mechanical blending is the most attractive process, because of its simplicity. Nevertheless, processing by this method leads to difficulties while obtaining sintered pellets with the minimum required density. This is due to the bad sintering behavior of the UO2-Gd2O3 mixed fuel, which shows a blockage in the sintering process that hinder the densification process. Minimal information exists regarding the possible mechanisms for this blockage and this is restricted to the hypothesis based on the formation of a low diffusivity Gd rich (U,Gd)O2 phase. The objective of this investigation was to study the phase formation in this system, thus contributing to clarifying the causes of the blockage. Experimental evidence indicated the existence of phases in the (U,Gd)O2 system that revealed structures different from the fluorite-type UO2 structure. These phases appear to be isostructural to the phases observed in the rare earth-oxygen system.  相似文献   

5.
Oxides possess many of the required properties suitable for an inert matrix fuel in light water reactors, however, their primary disadvantage is low thermal conductivity. Composites are being investigated to maximize the thermal conductivity of the inert matrix fuel by using thermally conductive MgO as the primary phase while improving its hot water corrosion resistance through the addition of a second phase acting as a hydration barrier. Inert matrix fuel candidate MgO-Nd2Zr2O7 composites were synthesized with multiple processing methods, the composite powders were characterized, the resulting microstructures quantitatively analyzed, and the thermal diffusivity of the composites was measured. Among the four processing methods investigated, ball milling and high-energy shaker blending produced the most homogeneous microstructures with a negligible amount of MgO and Nd2Zr2O7 heterogeneities. An effect of processing on the properties of the composites manifests as a larger variation in the thermal diffusivity in pellets processed by methods that produce a higher quantity and frequency of MgO and Nd2Zr2O7 heterogeneities than in methods that produce negligible amounts of heterogeneities.  相似文献   

6.
The co-precipitation technique renders an excellent route to obtain a homogeneous mixture of ThO2 and UO2 powders. In this process, after the nitrate solutions of Th and U are mixed in the intended ratio, oxalic acid is added for co-precipitation. The precipitate is then dried and calcined to get a solid solution of ThO2 and UO2. In this study, ThO2-30%UO2 and ThO2-50%UO2 (% in weight) powders were characterized in terms of particle size, particle shape, surface area, phase content, O/M ratio etc. The pellets obtained by sintering these powders were characterized with the help of optical microscopy, scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). The XRD data for ThO2-30%UO2 and ThO2-50%UO2 pellets showed the presence of a small amount of U3O8 phase besides fluorite phase. The grain size of ThO2-30%UO2 and ThO2-50%UO2 was found to be 5.7 and 4.5 μm, respectively.  相似文献   

7.
Samples of UO2and up to 10 wt% of Gd2O3 were prepared by solid-state reaction under a reducing atmosphere, in a thermal path comprising ramps and dwell times in the temperature range of 900–1750 °C. The sintered material was analyzed by X-ray diffraction and 155Gd Mössbauer spectroscopy. The results showed that for samples annealed up to 900 °C, the gadolinium sesquioxide remained unreacted. However, when the temperature was increased to 1300 °C, a solid-state reaction took place forming mixed oxides. For the more severe sintering condition, at 1750 °C, gadolinia left urania partially unreacted producing a material consisting of two compositions, UO2 (with no dissolved gadolinium) and (U, Gd)O2. The proposed heating cycle provided pellets free from Gd2O3 phase and may be used by the nuclear fuel industry as a suitable sintering process.  相似文献   

8.
International interest in high temperature gas-cooled reactor (HTGR) has been increasing in recent years. It is important to study on reprocessing of spent nuclear fuel from HTGR for recovery of nuclear resource and reduction of nuclear waste. Treatment of UO2 pellets used for preparing fuel elements of the 10 MW high temperature gas-cooled reactor (HTR-10) followed by supercritical fluid extraction was investigated. When UO2 pellets were dissolved and extracted with tri-n-butyl phosphate (TBP)–HNO3 complex in supercritical CO2 (SC-CO2), the extraction efficiency was less than 7% under experimental conditions. After UO2 pellets were ground into UO2 fine powders, the extraction efficiency of the UO2 fine powders with TBP–HNO3 complex in SC-CO2 could reach 92%. After UO2 pellets broke spontaneously into U3O8 powders under O2 flow and 600 °C, the extraction efficiency of the U3O8 powder with TBP–HNO3 complex in SC-CO2 could reach more than 98%.  相似文献   

9.
Powder morphology evolution of recycled U3O8 according to the thermal treatments has been studied. The defective UO2 pellets are oxidized to U3O8 powders at a conventional temperature of 350 or 450°C in air. Those powders are pressed into green pellets and then sintered at 1,500 and 1,730°C in H2 gas flow. Final reoxidized U3O8 powers are obtained by reoxidizing those sintered pellets at 450°C in air. This paper shows that the reoxidized U3O8 powder morphology and the BET surface areas are greatly dependent on the density of sintered UO2 pellets before reoxidation. Reoxidized U3O8 powders are added to virgin UO2 powders to fabricate UO2 pellets and the effect of such addition on the UO2 pellet properties is investigated. The reoxidized U3O8 powders having a certain range of BET surface area significantly promote the grain growth of UO2 pellets.  相似文献   

10.
Conclusions Defect-free PuO2−MgO pellets with a density of 4.4 g/cm3 (90% of the computed density of the composition, in which the volume fractions of PuO2 and MgO equal 15 and 85% respectively), were obtained. Work with plutonium-containing material showed that the technology developed for fabricating UO2−MgO fuel pellets is suitable for fabricating PuO2−MgO fuel pellets. Main Science Center of the Russian Federation — A. I. Leipunskii Physics and Power-Engineering Institute. Translated from Atomnaya énergiya, Vol. 82, No. 5, pp. 355–358, May, 1997.  相似文献   

11.
A mixture of UO2 and Gd2O3 powders was pressed into compacts and sintered under various atmospheres ranging from reducing to oxidizing gases. The sintered density of UO2–10 wt% Gd2O3 pellets decreases with increasing oxygen potential of the sintering atmosphere. Dilatometry and X-ray diffraction studies indicate that the delay of densification takes place between 1300°C and 1500°C, along with the formation of (U,Gd) O2. A very large solubility of Gd2O3 in UO2 relative to the reverse solubility might cause Gd ions to diffuse into UO2 so directionally that new pores are produced at the places of Gd2O3 particles. The new pores may be difficult to shrink and thus lead to the density decrease under an oxidizing atmosphere but not under a reducing atmosphere, because a driving force for the shrinkage of new pores may be smaller under an oxidizing atmosphere than under a reducing atmosphere.  相似文献   

12.
In the present work, liquid phase sintered SiC (LPS-SiC) was proposed as an inert matrix for the particle dispersed inert matrix fuel (IMF). The fuel particles containing plutonium and minor actinides were substituted with pure yttria stabilized zirconia beads. The LPS-SiC matrix was produced from the initial mixtures prepared using submicron sized α-SiC powder and oxide additives Al2O3, Y2O3 in the amount of 10 wt.% with the molar ratio 1Y2O3/1Al2O3. Powder mixtures were sintered using two sintering methods; namely conventional high temperature sintering and novel spark plasma sintering at different temperatures depending on the method applied in order to obtain dense samples. The phase reaction products were identified using X-ray diffraction (XRD) and microstructures were investigated using light microscopy and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX) techniques. The influence of powder mixing methods, sintering temperatures, pressures applied and holding time on the density of the obtained pellets was investigated. The samples sintered by slow conventional sintering show lower relative density and more pronounced interaction between the fuel particles and matrix in comparison with those obtained with the fast spark plasma sintering method.  相似文献   

13.
Four experimental fuel particle designs, utilizing zirconium carbide coatings in combination with porous and dense pyrocarbon coatings, were tested under high-temperature irradiation. As a fission-product corrosion test for the zirconium carbide, two particle designs employed carbide coatings applied directly over either UC2 or (8Th, 1U)O2 fuel kernels. The other two designs utilized zirconium carbide outside of porous pyrocarbon coatings but without the conventional inner dense pyrocarbon coating on either UC2 or (8Th, 1U)O2 fuel kernels. The particles were irradiated at 1200°C to a fast-neutron fluence of 5 × 1021 n/cm2 (E μ'0.18 MeV) and fractional burnups of the initial metal atoms of 0.7 and 0.08 for the UC2 and (8Th, 1U)O2 kernels, respectively. Stereoscopic, metallographic and electron-beam microprobe examination of the irradiated particles showed that the zirconium carbide possesses exceptional resistance to chemical attack by fission products and good mechanical stability under irradiation.  相似文献   

14.
Fabrication tests on advanced heterogeneous fuel with MgO were carried out for the purpose of establishing a practical fabrication method. Advanced heterogeneous fuel consists of spheres (diameter greater than 100 μm) of a minor actinide oxide and MgO inert matrix (macro-dispersed type fuel). Macro-dispersed type fuel pellets with a high density above 90% T.D. were successfully fabricated. In addition, the fabricated pellets showed a homogeneous dispersion of near spherical host phase granules. These were attained by optimization of the fabrication process and conditions; i.e. a preliminary heat treatment of raw powders of host phase, an adjustment of pressure at the granulation process, deployment of a spray-dry process for MgO sphere preparation and sintering in a He atmosphere. From these results, a practical fabrication method for MgO-based macro-dispersed type fuel based on a simple powder metallurgical technique was established.  相似文献   

15.
Uranium nitride and uranium carbonitride fuel pellets were prepared for irradiation in the Japan Material Testing Reactor. The pellets are 6.9 mm in diameter and 7 mm long, and are of natural and 5% enriched uranium. Uranium nitride powder was prepared from uranium metal via hydride and higher nitride. Uranium carbide powder was prepared from uranium metal by hydriding and then reacting with propane. The lowest possible reaction temperatures were selected to obtain fine and reactive powders. Uranium nitride and mixed powders of different ratios (UC: UN = 1: 3, 1:1 and 3: 1) were cold pressed without binder. Sintering was carried out in a tungsten crucible in vacuum (10~4 mmHg) for 2 hr at 1,900°–2,000°C. The density of the pellets obtained was in the range of 90~95% of the theoretical value with an oxygen content of 1,300~2,100 ppm. No second phase, such as metallic uranium, were observed in the specimens, either by metallography or X-ray diffraction. These pellets of unexpectedly high density without second phase must have been obtained thanks to the good powder characteristics combined with proper sintering conditions. The compositions of uranium carbonitride pellets were found to be slightly nitrogen deficient, compared with the reactants.  相似文献   

16.
Thermal diffusivities of UO2 and (U, Gd)O2 pellets irradiated in a commercial reactor (maximum burnups: 60 GWd/t for UO2 and 50 GWd/t for (U, Gd)O2) were measured up to about 2000 K by using a laser flash method. The thermal diffusivities of irradiated UO2 and (U, Gd)O2 pellets showed hysteresis phenomena: the thermal diffusivities of irradiated pellets began to recover above 750 K and almost completely recovered after annealing above 1400 K. The thermal diffusivities after recovery were close to those of simulated soluble fission products (FPs)-doped UO2 and (U, Gd)O2 pellets, which corresponded with the recovery behaviors of irradiation defects for UO2 and (U, Gd)O2 pellets. The thermal conductivities for irradiated UO2 and (U, Gd)O2 pellets were evaluated from measured thermal diffusivities, specific heat capacities of unirradiated UO2 pellets and measured sample densities. The difference in relative thermal conductivities between irradiated UO2 and (U, Gd)O2 pellets tended to become insignificant with increasing burnups of samples.  相似文献   

17.
介绍了中国核动力研究设计院(U,Gd)O2可燃毒物燃料芯块制造生产线所使用的原材料UO2粉末、Gd2O3粉末、(U,Gd)3O8粉末以及添加剂硬脂酸锌和草酸铵的主要性能,同时描述了混料、制粒、成型、烧结和磨削等制造工艺过程及其产品(U,Gd)O2芯块的主要性能,并对制造过程中有关工艺控制参数进行了讨论。  相似文献   

18.
The results of a differential-thermal analysis are used to compare the properties of ammonia polyuranate precipitates, UO2 powders and pellets, obtained by different methods as well as metallic uranium. It is found that the phase NH3·3UO3·5H2O forms in regular precipitation of ammonium polyuranate. When using nanotechnology, the phases NH3·2UO3·3H2O and 4NH3·6UO3·8H2O are also present in the precipitate. UO2 powder prepared from such precipitate has high activity, since all phase transformations in it occur at a lower temperature. Modified fuel pellets of uranium dioxide, which are obtained by means of nanotechnology or mechanical addition of ammonia-containing reagents to powder, differ from the standard powders by a lower rate and more complex mechanism of oxidation, similar to metallic uranium. Modified UO2 fuel pellets fabricated at the Physics and Power-Engineering Institute, are now undergoing tests in the BOR-60 reactor. After tests on the irradiated new modified fuel have been completed, it will be possible to judge its reliability.  相似文献   

19.
A solid-solution study of the US-UC-UC2 system at 1760 and 2170 K has revealed the range of compositions yielding the mandatory single-phase solid solutions for consideration as potential nuclear fuels. Two such compositions containing 20 and 40 mol%, respectively, of dissolved carbides have been selected, and convenient methods are described for their preparation from stoichiometric UC, ZnS and U3O8. Many of the physical and chemical properties of these compositions either as powders or as sintered pellets are reported. Compatibility with stainless steels under the test conditions is extremely good. However, sodium bonding is precluded through chemical reactions leading to the formation of Na2S, and ultimately free uranium. Creep strengths are greater than for hyperstoichiometric UC. It is concluded that the 80 mol% US composition with less than 10 mol% UC2is promising as a potential nuclear fuel, the 60 mol% US material being less so.  相似文献   

20.
The shrinkage of (U0.8, Pu0.2)O2±x pellets was investigated with the help of a thermal dilatometer in isothermal and isochronal heating tests. During shrinkage measurements in isothermal heating, the oxygen-to-metal ratio of the pellets was maintained at a constant value by controlling the oxygen potential in the sintering atmosphere. The influence of the oxygen-to-metal ratio on the sintering behavior was evaluated from the measurement results. Mainly two mechanisms dominated the sintering of mixed oxide pellets. When the oxygen-to-metal ratio was close to the stoichiometric composition, pellet shrinkage progressed at low temperatures of 1200-1600 K, and the shrinkage rate of the pellets drastically changed with a small deviation from stoichiometric composition. The result showed that a diffusion process was dominated during the sintering of near-stoichiometric compositions. On the other hand, the sintering of reduced mixed oxide pellet proceeded at high temperatures of 1600-1900 K, and the shrinkage rate was very low as compared with stoichiometric mixed oxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号