首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We assessed the effect of diabetes on antinociception produced by intracerebroventricular injection of delta-opioid receptor agonists [D-Pen2,5]enkephalin (DPDPE) and [D-Ala2]deltorphin II. The antinociceptive effect of DPDPE (10 nmol), administered i.c.v., was significantly greater in diabetic mice than in non-diabetic mice. The antinociceptive effect of i.c.v. DPDPE was significantly reduced in both diabetic and non-diabetic mice following pretreatment with 7-benzylidenenaltrexone (BNTX), a selective delta 1-opioid receptor antagonist, but not with naltriben (NTB), a selective delta 2-opioid receptor antagonist. There were no significant differences in the antinociceptive effect of [D-Ala2]deltorphin II (3 nmol, i.c.v.) in diabetic and non-diabetic mice. Furthermore, the antinociceptive effect of i.c.v. [D-Ala2]deltorphin II was significantly reduced in both diabetic and non-diabetic mice following pretreatment with NTB, but not with BNTX. In conclusion, mice with diabetes are selectively hyper-responsive to supraspinal delta 1-opioid receptor-mediated antinociception, but are normally responsive to activation of delta 2-opioid receptors.  相似文献   

2.
Recent results have shown that the sulfonylurea receptor couples to several types of inward-rectifier potassium (KIR) channels, which suggests that sensitivity to blockade of a pathophysiological phenomenon such as ischemic preconditioning (PC) by glibenclamide may not be the result of this compound selectively blocking the ATP-sensitive potassium (KATP) channel. Therefore, to address this possibility, a role for myocardial KIR v KATP channels in ischemic PC was evaluated in the rat. To test this hypothesis, anesthetized, open-chest, male Wistar rats were assigned to one of seven experimental protocols. Animals assigned to group I (control) received 30 min of occlusion and 2 h of reperfusion. Ischemic PC was produced by 3x5-min occlusion and 2-h reperfusion periods (group II). Terikalant (TK), an inward-rectifier potassium channel blocker, was used to test the role of other K+ channels, most notably the KIR, in the cardioprotective effect of ischemic PC in the rat. TK was given at a dose of 3 mg/kg, i.v., 15 min before the prolonged occlusion and reperfusion periods (group III). In groups IV, V, and VI terikalant (1, 3 and 6 mg/kg, i.v.) was given 15 min before ischemic PC (lowTK+PC, medTK+PC and hiTK+PC, respectively). Group VII consisted of glibenclamide (0.3 mg/kg, i.v.) given 30 min prior to ischemic PC (GLY+PC). Infarct size (IS) as a percent of the area at risk (AAR) was measured using the histochemical stain, 2,3, 5-triphenyltetrazolium chloride. The average IS/AAR for the control was 49.9+/-2.1%. Ischemic PC markedly reduced infarct size (8.6+/-1. 8%; * P<0.05 v control). Terikalant (TK; 1, 3 and 6 mg/kg, i.v.) did not abolish the cardioprotective effect of ischemic PC at any dose (15.5+/-6.4, 16.4+/-5.2 and 8.8+/-1.6%, respectively; * P<0.05 v control). TK itself had no effect on infarct size. GLY completely abolished the cardioprotective effect of ischemic PC (48.2+/-6.4%). In addition, the high dose of TK significantly (P<0.05) increased the action potential duration at 50% repolarization from 48+/-3 to 64+/-4 ms and 30 microM of TK, a concentration which produced a 39% decrease in the inward-rectifier potassium channel current in isolated guinea-pig ventricular myocytes in the whole-cell patch-clamp mode did not block the increase in K ATP current produced by the KATP opener bimakalim (3 microM). These results demonstrate that although the myocardial KATP channel belongs to the K IR superfamily, the endogenous myocardial KIR channel does not mediate ischemic PC in the rat heart; however, the K ATP channel does mediate its cardioprotective effect.  相似文献   

3.
BACKGROUND: The aim of this study was to determine whether (1) adrenergic activation is cardioprotective, (2) adrenergic cardioprotection occurs via adenosine receptor activation, and (3) ischemic preconditioning requires alpha-adrenergic activation. METHODS: Anesthetised open chest rabbits underwent 30 min coronary occlusion and 3 h reperfusion. Ischemic preconditioning was elicited with 5 min coronary occlusion and 10 min reperfusion. Activation of adrenergic receptors with endogenous norepinephrine was achieved with tyramine (0.28 mg/kg/min intravenously for 5 min). Adenosine receptors were blocked with 8-p-sulfophenyl theophylline (10 mg/kg intravenously), alpha 1-adrenergic receptors were selectively blocked with prazosin (0.1 mg/kg intravenously), and alpha-adrenergic receptors were blocked with phentolamine (4 mg/kg intravenously). RESULTS: Ischemic preconditioning reduced risk-adjusted infarct volume by 79% (P < 0.0005). This protection was attenuated by adenosine receptor blockade. Tyramine infusion resulted in a 1305% change from baseline plasma norepinephrine concentration (P < or = 0.01), and reduced infarct volume by 55% (P = 0.01). Adenosine receptor blockade abolished this protection. Blockade of alpha 1-adrenergic receptors with prazosin failed to abolish ischemic preconditioning (79 versus 89% reduction in infarct volume, without and with prazosin, respectively). Similarly, non-selective blockade of alpha-adrenergic receptors also failed to abolish ischemic preconditioning (79 versus 57% reduction without and with phentolamine, respectively). CONCLUSIONS: We conclude that the cardioprotection of ischemic preconditioning and alpha-adrenergic activation both involve adenosine, but ischemic preconditioning does not require alpha-adrenergic activation.  相似文献   

4.
Naltriben (NTB) is a selective antagonist for the putative delta2-opioid receptor. We have determined the regional kinetics and pharmacological profile of [3H]naltriben in vivo in mouse brain. After i.v. administration to CD1 mice, [3H]naltriben uptake and retention were high in striatum, cortical regions and olfactory tubercles, and low in superior colliculi and cerebellum. Robust rank order correlation was found between [3H]naltriben uptake in discrete brain regions and prior delta-opioid receptor binding determinations in vitro and in vivo. [3H]Naltriben binding in vivo was saturable, and was blocked by the delta-opioid receptor antagonist naltrindole, but not by the mu-opioid receptor antagonist cyprodime or the K-opioid receptor agonist (trans)-(+/-)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]ben zeneacetamide mesylate (U50,488H). (E)-7-Benzylidenenaltrexone (BNTX), a selective antagonist for the putative delta1-opioid receptor, was 9.6- to 12.9-fold less potent than naltriben as an inhibitor of [3H]naltriben binding. Thus, the sites labeled by [3H]naltriben in vivo may correspond to the delta2-opioid receptor subtype. Such assignment is not definitive, particularly considering the 4-fold higher brain uptake of naltriben as compared to (E)-7-benzylidenenaltrexone. Moreover, the regional distribution of [3H]naltriben in brains from CXB-7/BY (CXBK) mice, a strain that shows supraspinal delta1- but not delta2-opioid receptor agonist effects, was quite similar to that found for CD1 mice.  相似文献   

5.
The effects of diabetes on morphine-induced place preference in mice were examined. Morphine caused dose-related place preference in both diabetic and non-diabetic mice. This morphine-induced place preference in diabetic mice was greater than that in non-diabetic mice. The morphine (5 mg/kg)-induced place preference in both diabetic and non-diabetic mice was significantly antagonized by pretreatment with beta-funaltrexamine, a selective mu-opioid receptor antagonist, but not with naloxonazine, a selective mu1-opioid receptor antagonist. The morphine (5 mg/kg)-induced place preference in non-diabetic mice was attenuated by pretreatment with either naltriben, a selective delta2-opioid receptor antagonist, or 7-benzylidenenaltrexone. a selective delta1-opioid receptor antagonist. Moreover, the morphine (10 mg/kg)-induced place preference in non-diabetic mice was antagonized by pretreatment with 7-benzylidenenaltrexone (0.7 mg/kg). Although 7-benzylidenenaltrexone had no effect on the place preference induced by 5 mg/kg morphine in diabetic mice, it reduced the place preference induced by 3 mg/kg morphine. Furthermore, the morphine (5 mg/kg)-induced place preference in diabetic mice was significantly antagonized by co-pretreatment with beta-funaltrexamine (10 mg/kg) and 7-benzylidenenaltrexone (0.7 mg/kg). 2-Methyl-4a alpha-(3-hydroxyphenyl)- 1,2,3,4,4a,5,12,12a alpha-octahydroquinolino[2,3,3-g]isoquinoline (TAN-67), a non-peptide delta-opioid receptor agonist, produced place preference in diabetic, but not in non-diabetic mice. These results support the hypothesis that the morphine-induced place preference is mainly mediated through the activation of the mu2-opioid receptor. Furthermore, the enhancement of the morphine-induced place preference in diabetic mice may be due to the up-regulation of delta-opioid receptor-mediated functions.  相似文献   

6.
The delta(delta)-opioid agonists [D-Pen2,5]enkephalin (DPDPE) and [D-Ala2]deltorphin II increased the formation of inositol phosphates (IPs) in mice periaqueductal gray matter (PAG) slices pre-labeled with myo-[3H]inositol. Both delta-agonists caused an increase in IP accumulation in a dose-dependent manner (1-100 microM) and which was pertussis toxin (0.5 microg/mouse, i.c.v.) sensitive. This effect was blocked by the delta-antagonist ICI-174.864 (10 microM). The presence of subtypes of the delta-opioid receptor (delta1 and delta2) in PAG has been suggested by pharmacological studies. In this brain structure, naltrindrole 5'-isothiocyanate (5'-NTII), but not 7-benzylidenenaltrexone (BNTX), antagonized the effects of DPDPE and [D-Ala2]deltorphin II, suggesting the involvement of a population of delta receptors sensitive to the delta2-antagonist NT II on this effect. To further investigate the participation of delta-receptor subtypes in the stimulation of IPs formation, mice were injected with antisense oligodeoxynucleotides (ODNs) directed to nucleotides 7-26 or 2946 of the cloned delta-receptor mRNA, and PAG slices from these animals were used in in vitro assays. The results demonstrate that the reported increase of phosphoinositide (PI) hydrolysis depends on the agonist activation of the delta2-opioid receptor subtype in the PAG.  相似文献   

7.
This paper provides an overview of our current understanding of the central mechanisms of cough and antitussives. Systemic administration of 8-OH-DPAT at doses of 0.1 and 0.3 mg/kg, i.p. markedly reduced the number of coughs in rats in a dose-dependent manner. The antitussive effect of 8-OH-DPAT, dihydrocodeine and dextromethorphan significantly was reduced by pretreatment with methysergide, but not ketanserin. Therefore, it is possible to speculate that the 5-HT1 receptors, in particular the 5-HT1A receptors, may be more important than others with respect to the effect of antitussive drugs. DAMGO, a selective mu-opioid receptor agonist, and U-50,488H, a highly selective kappa-opioid receptor agonist, have potent antitussive effects when administered either i.c. or i.p. However, we did not observe a cough-depressant effect of DPDPE, a selective delta-opioid receptor agonist. These results indicate that the antitussive effects of opioids are mediated predominantly by mu- and kappa-opioid receptors. On the other hand, naloxonazine, a selective mu 1-opioid receptor antagonist, had no effect on the antitussive effects associated with i.c.v. DAMGO. These results indicate that mu 2-rather than mu 1-opioid receptors are involved in mu-opioid receptor-induced antitussive effects. Antitussive effects of dextromethorphan and noscapine were significantly and dose-dependently reduced by pretreatment with rimcazole, a specific antagonist of sigma sites. However, rimcazole did not have a significant effect on the antitussive effect of morphine. These results suggest that sigma sites may be involved in the antitussive mechanism of non-narcotic antitussive drugs.  相似文献   

8.
This study examined the contribution of spinal delta1 and delta2 opioid receptors to the antinociception produced by microinjection of L-glutamate in either the nucleus raphe magnus (NRM) or the nucleus reticularis gigantocellularis pars alpha (NGCp alpha) of the rat. Intrathecal (i.t.) pretreatment with 1 microg of 7-benzylidinenaltrexone (BNTX), a delta1 opioid receptor antagonist, did not antagonize the increase in tail flick latency (TFL) produced by microinjection of L-glutamate in either the NRM or the NGCp alpha. In contrast, i.t. pretreatment with 3 microg of naltriben (NTB), a delta2 opioid receptor antagonist, completely antagonized the increase in TFL evoked by microinjection of L-glutamate in the NRM, but did not antagonize the increase in TFL evoked from the NGCp alpha. These results suggest that the antinociception produced by activation of these bulbospinal pathways is predominantly mediated by spinal delta2 opioid receptors and that there is little, if any, contribution by spinal delta1 opioid receptors.  相似文献   

9.
This study examined the cardioprotective effects and pharmacology of the novel adenosine A1/A2 receptor agonist ([1S-[1a,2b,3b, 4a(S*)]]-4-[7-[[2-(3-chloro-2-thienyl)-1-methylpropyl]amino]-3H-imida zo[4,5-b] pyridyl-3-yl] cyclopentane carboxamide) (AMP 579), in a model of myocardial infarction. Experiments were performed in pentobarbital-anesthetized pigs in which myocardial infarction was induced by a 40-min occlusion of the left anterior descending coronary artery, followed by 3 hr of reperfusion. This procedure resulted in approximately 20% of the left ventricle being made ischemic in all test groups. In untreated animals, an infarct size equal to 56 +/- 5% of the ischemic area was observed. Preconditioning, with two cycles of 5 min of ischemia followed by 10-min reperfusion, resulted in a 70% reduction in infarct size (17 +/- 5%) relative to risk area. Administration of AMP 579 30 min before ischemia (3 microg/kg i.v. followed by 0.3 microg/kg/min i.v. through 1 hr of reperfusion) did not change blood pressure, HR or coronary blood flow but resulted in marked cardioprotection: a 98% reduction in infarct size (1 +/- 1%) relative to risk area. Moreover, whereas approximately 90% of control pigs suffered ventricular fibrillation during ischemia, no fibrillation was observed in animals treated with AMP 579. Further experiments determined the effects of AMP 579 when administered 30 min after the onset of myocardial ischemia, 10 min before reperfusion. Two doses were studied: a low hemodynamically silent dose (3 microg/kg + 0.3 microg/kg/min through 1 hr of reperfusion) and a 10-fold higher dose that did cause reductions in blood pressure and HR. Both doses of AMP 579 produced a comparable cardioprotective effect, reducing infarct size to approximately 50% of that observed in control animals. The cardioprotective effect of AMP 579 was a consequence of adenosine receptor stimulation, because it was completely inhibited by pretreatment with the specific adenosine receptor antagonist CGS 15943 (1 mg/kg i.v.). However, the selective A1 receptor agonist GR 79236 (3 microg/kg + 0.3 microg/kg/min i.v.) did not reduce infarct size, which suggests that under these experimental conditions, stimulation of adenosine A2 receptors is important for the cardioprotective effect of AMP 579. The adenosine-regulating agent acadesine (5 mg/kg + 0.5 mg/kg/min i.v.) also failed to reduce infarct size. In conclusion, the novel adenosine A1/A2 receptor agonist AMP 579 produces marked cardioprotection whether administered before myocardial ischemia or reperfusion. Cardioprotection is not dependent on changes in afterload or myocardial oxygen demand and is a consequence of adenosine receptor stimulation. The pharmacological profile of AMP 579 in this model is consistent with its potential utility in the treatment of acute myocardial infarction.  相似文献   

10.
11.
The antinociceptive potency of dihydroetorphine in diabetic mice was examined. Subcutaneous administration of dihydroetorphine produced a dose-dependent antinociception in both non-diabetic and diabetic mice. The antinociceptive potency of s.c. dihydroetorphine was less in diabetic mice than in non-diabetic mice. The antinociception induced by i.c.v. dihydroetorphine (0.02 microgram) was also significantly less in diabetic mice than in non-diabetic mice. The antinociceptive effects of dihydroetorphine (10 micrograms/kg i.p.) in both diabetic and non-diabetic mice were significantly antagonized by s.c. administration of beta-funaltrexamine, a selective mu-opioid receptor antagonist. Furthermore, the antinociceptive effect of dihydroetorphine (10 micrograms/kg i.p.) in non-diabetic mice, but not in diabetic mice, was also significantly antagonized by naloxonazine, a selective mu 1-opioid receptor antagonist. The time course and the potency of the antinociceptive effect of dihydroetorphine (10 micrograms/kg i.p.) in diabetic mice were similar to those in naloxonazine-treated non-diabetic mice. Naltrindole, a selective delta-opioid receptor antagonist, or nor-binaltorphimine, a selective kappa-opioid receptor antagonist, had no significant effect on the antinociceptive effect of dihydroetorphine (10 micrograms/kg i.p.) in both diabetic and non-diabetic mice. These results suggest that dihydroetorphine produces an antinociceptive effect through the activation of both mu 1- and mu 2-opioid receptors in mice. Furthermore, the reduction in dihydroetorphine-induced antinociception in diabetic mice, as compared with non-diabetic mice, may be due to the hyporesponsive to supraspinal mu 1-opioid receptor-mediated antinociception in diabetic mice.  相似文献   

12.
Ischemic preconditioning is known to be mediated by several humoral factors, such as adenosine, norepinephrine, and bradykinin. We examined intracellular signal transduction of ischemic preconditioning following receptor stimulation. Alterations in the pH of the ischemic bed were monitored to assess the response of control and ischemic-preconditioned myocardium to glibenclamide and pertussis toxin. Pentobarbital-anesthetized open-chest dogs were subjected to 40 min of ligation of the left anterior descending coronary artery. Ischemic preconditioning was elicited by 25-min periods of coronary ligation followed by 5 min of reperfusion before a 40-min period of ligation. Glibenclamide (0.3 mg/kg)was given i.v. 20 min before the onset of ischemic preconditioning. Pertussis toxin (6-10 micrograms/kg) was given i.v. 3 days before the experiment. Tissue myocardial pH was measured by a glass micro-pH electrode. Ischemia for 5 min decreased myocardial pH and reperfusion returned it to the preischemic levels. Ischemia for 40 min decreased the myocardial pH from 7.43 +/- 0.06 to 6.43 +/- 0.08. Ischemic preconditioning significantly attenuated the decrease in myocardial pH (6.57 +/- 0.06) induced by 40 min of ischemia. Pretreatment with either glibenclamide or pertussis toxin completely abolished the effect of ischemic preconditioning on ischemic myocardial acidosis. Ischemic preconditioning can attenuate ischemia-induced myocardial acidosis in dogs, and this effect is mediated by activation of adenosine triphosphate-sensitive potassium channels and pertussis toxin-sensitive guanosine triphosphate-binding protein.  相似文献   

13.
A series of 7-arylidinenaltrexones (2a-m) related to the prototypical delta1-selective antagonist, 7-benzylidenenaltrexone 1 (BNTX), have been synthesized in an effort to develop more selective ligands. Testing in smooth muscle preparations revealed that members of the series exhibited varying degrees of selectively for delta receptors, with the o-methoxy (2e) and o-chloro (2j) congeners being most potent and most selective (Ke approximately 0.8 nm). Evaluation of 1, 2e, and 2f sc in mice using the tail-flick procedure indicated that they are selective delta1 opioid receptor antagonists in the lower dose range. At high doses these ligands, including BNTX, exhibited decreased delta1 selectivity due to increases in the ED50 ratios of [D-Ser2,Leu5]enkephalin-Thr6 and morphine. It is concluded that 2e and 2f possess in vivo selectivity similar to that of BNTX, but are less potent as delta1 antagonists.  相似文献   

14.
The effects of chronic administration of [D-Pen2, D-Pen5]enkephalin and [D-Ala2, Glu4]deltorphin II, the selective agonists of the delta 1- and delta 2-opioid receptors, on the binding of [3H]MK-801, a noncompetitive antagonist of the N-methyl-D-aspartate receptor, were determined in several brain regions of the mouse. Male Swiss-Webster mice were injected intracerebroventricularly (i.c.v.) with [D-Pen2, D-Pen5]enkephalin or [D-Ala2, Glu4]deltorphin II (20 micrograms/mouse) twice a day for 4 days. Vehicle injected mice served as controls. Previously we have shown that the above treatment results in the development of tolerance to their analgesic activity. The binding of [3H]MK-801 was determined in brain regions (cortex, midbrain, pons and medulla, hippocampus, striatum, hypothalamus and amygdala). At 5 nM-concentration, the binding of [3H]MK-801 was increased in cerebral cortex, hippocampus, and pons and medulla of [D-Pen2, D-Pen5]enkephalin treated mice. In [D-Ala2, Glu4]deltorphin II treated mice, the binding of [3H]MK-801 was increased in cerebral cortex and hippocampus. The changes in the binding were due to increases in the Bmax value of [3H]MK-801. It is concluded that tolerance to delta 1- and delta 2-opioid receptor agonists is associated with up-regulation of brain N-methyl-D-aspartate receptors, however, some brain areas affected differ with the two treatments. The results are consistent with the recent observation from this laboratory that N-methyl-D-aspartate receptors antagonists block tolerance to the analgesic action of delta 1- and delta 2-opioid receptor agonists.  相似文献   

15.
The authors explored naltriben's (NTB, a delta opioid antagonist) potential to be a pharmacotherapy for cocaine abuse. NTB (3–6 mg/kg) reduced rats' (Rattus norvegicus) intravenous, self-administration of cocaine, daily, across 5 days. NTB did not, however, interfere with rats' pressing for water. NTB (3 mg/kg) blocked cocaine's facilitation of pressing for brain stimulation, daily, for 5 days. As doses of NTB were explored, it was found that 10 mg/kg of NTB was lethal for about one third of the rats. Smaller doses (e.g., 3 mg/kg) gave some indications of toxicity as indexed by NTB's tendency to reduce pressing for brain stimulation by itself. NTB (3 mg/kg) induced a mild conditioned taste aversion but had no negative effects on rats' ability to learn and remember a sequence of mazes. Taken together, these results lead to the suggestion that opioidergic processes play an important role in mediating cocaine's reinforcement. Although NTB may not be the ideal opioid antagonist for treating people, it has many positive properties supporting further investigation of opioid antagonists as agents for treating cocaine addiction. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

16.
OBJECTIVES: Cardioprotective adaptation to brief periods of ischemia and reperfusion is termed ischemic preconditioning (PC). Limitation of infarct size by preconditioning is associated with marked slowing of ischemic metabolism. The cause of metabolic slowing has not been determined but may involve either pro- or anti-adrenergic mechanisms. Hypothetically, adrenergic stimulation could signal the adaptive response. Alternatively, metabolic slowing during the sustained ischemic challenge could occur through a reduction in beta-adrenergic stimulation. This study was designed to test the role of cardiac norepinephrine (NE) in PC. METHODS: The effect of PC on myocardial infarct size was studied in control dogs and dogs depleted of catecholamines by pretreatment with reserpine (RES; 0.25 mg/kg i.v.). PC was induced by four cycles of 5 min of ischemia and 5 min of reperfusion. Infarcts were produced by 60 min of ischemia and 3 h of reperfusion. Cardiac NE depletion was verified by radioimmunoassay of tissue samples and by absence of hemodynamic response to a tyramine bolus (1.4 mg/kg) administered at the end of each experiment. Infarct size, expressed as percent of area at risk, was controlled for variation in collateral blood flow using analysis of covariance (ANCOVA). RESULTS: Adjusted mean infarct size was 25.5 +/- 3.2% in untreated controls vs. 19.1 +/- 3.3% in RES-treated controls (P = NS). PC limited infarct size in untreated dogs (7.4 +/- 1.8 vs. 25.5 +/- 3.2%; PC vs. control; P < 0.01) but not in RES-treated dogs (15.7 +/- 3.0% vs. 19.1 +/- 3.3%; RES + PC vs. RES; P = NS). Infarct size was larger in dogs with RES + PC than with PC alone, even though there was a trend toward a slight beneficial effect with RES alone. CONCLUSION: The cardioprotective effect of ischemic preconditioning cannot be explained entirely as an anti-adrenergic effect. On the contrary, adrenergic receptor stimulation may be required for the full expression of ischemic preconditioning in canine myocardium.  相似文献   

17.
The present study aimed to examine (1) whether the role of the opioid receptor in ischemic preconditioning (PC) is consistent regardless of the duration of ischemic insult and (2) which opioid receptor subtype contributes to PC. In the first series of experiments, the effects of PC, a nonselective opioid receptor antagonist (naloxone), and their combination on the infarct size after various durations of ischemia were assessed. In anesthetized, open-chest rats, the coronary artery was occluded for 20, 30, or 40 minutes to induce infarction and was reperfused for 3 hours, PC was performed with two cycles of 5-minute ischemia followed by 5-minute reperfusion before the sustained ischemia. At 25 minutes before the ischemia, naloxone was injected alone or in combination with subsequent PC. Infarct size was determined by tetrazolium staining and was expressed as a percentage of the risk area size (%IS/RA). In the second series of experiments, the effects of a delta-receptor-selective antagonist, naltrindole (NTI), and a kappa-receptor selective antagonist, nor-binaltrophimine (nor-BNI), on PC before 30-minute coronary occlusion were assessed. In untreated controls, %IS/RA was 53.1 +/- 3.2 after 20 minutes, 67.9 +/- 3.9 after 30 minutes, and 87.8 +/- 2.0 after 40 minutes of ischemia, respectively. PC significantly reduced %IS/RA after 20, 30, and 40 minutes of ischemia to 3.1 +/- 0.8, 12.8 +/- 1.1, and 42.1 +/- 4.3, respectively (P < 0.05 vs. each control). Naloxone (6 mg/kg) partially attenuated the protection afforded by PC when the sustained ischemia was 30 minutes (%IS/RA = 27.4 +/- 4.5; P < 0.05 vs. PC), but this inhibitory effect of naloxone was not detected when the duration of the ischemia was 20 or 40 minutes. NTI (10 mg/kg) also attenuated infarct size limitation by PC after 30 minutes of ischemia (%IS/RA = 25.6 +/- 3.7), but nor-BNI (10 mg/kg) failed to modify infarct size limitation by PC (%IS/RA = 13.3 +/- 3.2). The present results suggest that activation of the opioid delta-receptor partly contributes to preconditioning against infarction in the rat and that there may be a time window (at around 30 minutes after the onset of ischemia) for this opioid receptor-mediated protective mechanism.  相似文献   

18.
Previous studies on the mRNA and protein level suggested a cardioprotective role of FGF-1. These presumed actions of FGF-1 and FGF-2, as well as the underlying mechanisms, were investigated in this study. Human recombinant FGF-1 (0.5 microgram/ml, 20 microliters/min) and FGF-2 (2 micrograms/ml) were applied by means of direct intramyocardial infusion (IM) for 60 min prior to a 60 min LAD-occlusion and 120 min reperfusion. Myocardial infarction compared to the region at risk was significantly decreased by FGF-1 and FGF-2 treatment (FGF-1: 51.8 +/- 7.7%, respectively. FGF-2: 57.3 +/- 6.5% v control 83.4 +/- 2.8%, P < 0.05). The increase in survival time was about 33 min, and equalled that of ischemic preconditioning. This effect was caused by the mitogenic part of the molecule, since infusion of a truncated version of FGF-1 (0.5-1 microgram/ml), lacking mitogenicity but maintaining hemodynamic activity, did not induce cardioprotection (78.3 +/- 0.73% v control 83.4 +/- 2.8%). Suramin (0.5 microgram/ml) prevented the observed cardioprotection (77.0 +/- 1.2% v control 83.4 +/- 2.8%) proving that the cardioprotective effect is receptor-mediated. Genistein (0.5 microgram/ml), an inhibitor of tyrosine kinases, abolished the cardioprotection as well (77.2 +/- 2.4% v control: 83.4 +/- 2.8%). Immunohistochemical staining revealed an uptake and translocation of exogenous FGF-1 to a (peri-)nuclear localization in myocytes and into non-myocytes for FGF-2. We conclude that both FGF-1 and FGF-2 are cardioprotective (FGF-1 being more active on a molar basis), and mimic ischemic preconditioning. Their actions are receptor-mediated and receptor activation is involved. Uptake and transport to a (peri-)nuclear localization, seems to be a pathway of minor relevance, since it could not be blocked by tyrosine kinase receptor inhibition. Tyrosine kinase-coupled receptor occupation in general is not protective as demonstrated by the lack of effect with VEGF-infusion.  相似文献   

19.
Delta9-tetrahydrocannabinol (delta9-THC) elicits antinociception in rodents through the central CB1 cannabinoid receptor subtype. In addition. Delta9-THC stimulates the release of dynorphin-related peptides leading to kappa-opioid spinal antinociception. In this work we describe the effect of a mixture of thiorphan (a neutral endopeptidase EC3.4.24.11 inhibitor) and bestatin (an aminopeptidase inhibitor), administered i.c.v., on the antinociceptive effect of peripherally administered delta9-THC in mice. As in the case of morphine or DAMGO ([D-Ala2.N-Me-Phe4,Gly-ol]enkephalin), a mu-selective opioid receptor agonist, the mixture of enkephalin-degrading enzyme inhibitors also enhanced the antinociceptive effect of delta9-THC. This effect was blocked by the CB1 cannabinoid receptor antagonist, SR-141,716-A, as well as by naloxone. The kappa-opioid receptor antagonist nor-binaltorphimine, administered i.t., also antagonized the effect of this combination. Similar results were obtained with the mu-opioid receptor antagonist beta-funaltrexamine after i.c.v. administration. These results demonstrate the involvement of both mu-opioid supraspinal and kappa-opioid spinal receptors in the interaction of both opioid and cannabinoid systems regulating nociception in mice.  相似文献   

20.
Selective opioid-receptor agonists were tested in combination with cocaine to determine the effect on the motor activity of rats. Cocaine produced dose-dependent increases in locomotor activity (distance traveled). The cocaine-induced increase in locomotor activity was potentiated by the selective delta-opioid receptor agonist [D-Pen2-D-Pen5]enkephalin (DPDPE). This potentiation was blocked by the general opioid receptor antagonist naltrexone, as well as by the selective opioid receptor antagonists beta-FNA (mu-opioid receptor) and naltrindole (delta-opioid receptor). DPDPE also potentiated the increase in locomotor activity produced by the selective dopamine reuptake inhibitor GBR12909, but not that produced by the direct dopamine receptor agonist apomorphine. Cocaine-induced motor activity was potentiated by the activation of central delta-opioid receptors. The synergistic effect seen with delta-opioid receptor activation may involve a mu-opioid receptor component, and is probably mediated via a dopaminergic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号