首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
该文建立了整流侧为电网换相换流器(LCC)、逆变侧为LCC和模块化多电平换流器(MMC)串联的LCC-MMC串联型混合直流输电系统的小信号模型.首先,推导LCC的交直流侧等效电路和考虑内部动态特性的MMC的交直流侧等效电路;然后,基于等效电路构建系统整流侧模型和逆变侧模型,并对直流输电线路和控制系统进行建模,通过组合各个部分模型得到全系统模型;最后,通过线性化全系统模型得到全系统小信号模型.通过对比基于PSCAD/EMTDC搭建的电磁暂态模型验证小信号模型的准确性;基于小信号模型,分析MMC定直流电压控制参数、逆变侧LCC定直流电压控制参数、锁相环(PLL)参数和交流联络线参数对系统小信号稳定性的影响.该文所提出的LCC-MMC串联型混合直流输电系统的小信号模型可用于系统的小信号稳定性分析,从而为系统设计和参数选择提供有价值的参考.  相似文献   

2.
混合级联型多落点直流输电系统整流侧为换相换流器(LCC),逆变侧为LCC和模块化多电平换流器(MMC)组串联的拓扑结构,可以有效抑制换相失败,具备大容量功率传输的优势。建立了单极混合级联型多落点直流输电系统,针对系统中LCC送受端交流故障引发的直流功率降低、逆变侧换相失败以及受端低端MMC子系统产生的功率反向问题进行了研究,提出了一种提升系统稳定性的协调控制策略。该策略通过改变逆变侧直流电压来维持交流系统故障后功率传输的稳定性,可防止受端MMC功率反送。PSCAD/EMTDC仿真结果验证了所提协调控制策略的有效性。  相似文献   

3.
基于苏州同里±10 kV直流配电系统参数,针对直流单极接地和极间短路故障暂态特性进行了研究.采用示范工程系统结构及控制策略,利用PSCAD建立了电磁暂态模型,针对系统交流侧、换流器侧、直流侧和负荷侧进行了故障过电压、过电流研究,分析了接地电阻对直流侧电压和电流的影响.结果 表明:系统直流侧发生单极接地故障时,交流侧出现持续直流分量,换流器不闭锁,DC-DC变换器高压侧电容放电;故障接地电阻对直流侧电压、电流影响大;极间短路故障产生严重过电流,将触发换流器过电流保护,导致换流器闭锁;故障电流是产生过电压的重要原因;电感元件两端过电压较大,极间故障对系统交流侧影响较小.  相似文献   

4.
针对一种在整流侧和逆变侧分别采用电网换相型换流器(LCC)和模块化多电平换流器(MMC)的新型混合直流输电系统,提出了直流回路的谐波模型。在整流侧采用三脉动谐波电压源,等效了12脉动换流器的谐波输出特性;在逆变侧使用电容串联电感的无源结构作为MMC直流侧等效电路,同时搭建了输电线路及直流滤波器相应的谐波模型。以单极混合直流输电系统为例,对该直流回路进行阻抗-频率扫描,计算出不同情况下该直流回路的谐波阻抗大小,从而对谐振情况进行判断。仿真结果表明:随着线路长度及滤波器组数的增加,谐振频率均有所降低。  相似文献   

5.
双极MMC-HVDC系统直流故障特性研究   总被引:2,自引:0,他引:2  
直流故障是模块化多电平换流器高压直流输电(MMC-HVDC)的主要故障类型,目前国内外对于MMC-HVDC直流侧故障的研究主要集中于伪双极系统,而对于真双极系统直流侧故障的研究还处于起步阶段。首先,介绍真双极MMC的拓扑结构和工作原理,并根据实际交直流系统电气参数、桥臂子模块电容及电抗的放电机制,建立真、伪双极两种拓扑MMC-HVDC系统直流故障状态下的对应等效电路。然后,对比分析两种拓扑不同阶段故障电流在MMC桥臂上的流通路径,重点研究了故障短路电流对换流站桥臂阀组影响程度的差异,并指出三种电气参数与故障短路电流变化之间的内在关系。最后,基于RT-LAB仿真平台,搭建51电平双极MMCHVDC双端直流输电模型,仿真结果证明了直流故障特性研究方法的正确性。  相似文献   

6.
模块化多电平换流器型高压直流输电(MMC-HVDC)系统向无源网络供电是MMC-HVDC技术的一个重要应用领域,因此有必要对向无源网络供电的MMC-HVDC系统的控制器进行设计,为此,基于MMC拓扑结构,推导了MMC数学模型,并由此设计了整流侧和无源网络侧的控制器,仿真结果验证了所设计控制器的正确性,且表明MMC-HVDC系统向无源网络供电是一种比较理想的输配电方式。  相似文献   

7.
混合型模块化多电平换流器(MMC)在远距离大容量架空线输电领域具有十分广阔的应用前景。为定量研究混合型换流器的运行特性,文中提出了混合型MMC动态解析模型和稳态解析模型的建模方法。通过稳态解析模型求解与换流器内部电气量和控制量有关的非线性方程组,实现了在任意直流电压和功率运行点下换流器运行特性的完全解析求解。对比了不同直流电压水平下,电磁暂态模型仿真结果和稳态解析模型的计算结果,验证了稳态解析模型的精确性。研究了考虑多种运行约束条件时混合型MMC的功率运行区间计算方法,尤其考虑了半桥子模块的均压约束。计算了不同直流电压水平下的功率运行区间,分析了各约束条件以及子模块电容、桥臂电抗器、桥臂子模块比例等参数对功率运行区间的影响。  相似文献   

8.
整流侧采用电网换相换流器(Line Commutated Converter,LCC),逆变侧采用模块化多电平换流器(Modular Multilevel Converter,MMC)构成的混合直流输电系统,结合了LCC、MMC的优点;同时,当MMC为半桥子模块和全桥子模块各占50%的混合型MMC时,系统具有较强的交直流故障穿越能力。针对整流侧交流系统严重故障下半桥子模块和全桥子模块电容电压不平衡的问题,提出一种改进的环流控制策略。改进的环流控制策略通过检测MMC的运行工况,调整环流控制器的参考值,从而使桥臂电流具有正负交替的特性。其次,提出基于虚拟电阻和电流指令限值的故障暂态电流抑制策略,能够抑制故障穿越期间交直流电流的振荡,确保系统安全稳定运行。基于PSCAD/EMTDC仿真平台,搭建LCC-MMC混合直流输电系统,仿真验证了所提控制方法的有效性。  相似文献   

9.
受端混联型LCC-MMC直流输电系统是一种在整流侧采用电网换相换流器(line commutated converter,LCC),逆变侧采用高压阀组LCC和低压阀组模块化多电平换流器(modular multilevel converter,MMC)相串联的混合直流输电系统.当送端交流网侧电压跌落时,整流侧LCC直流...  相似文献   

10.
电网换相换流器和模块化多电平换流器(LCC-MMC)混合直流输电系统兼顾了两种换流器的技术优势和经济优势,具有较好的应用前景。无源网络装设容性滤波装置能够起到平滑交流电压波形、提供电压支撑等作用。首先通过理论推导,建立了含容性滤波装置的模块化多电平换流器数学模型,基于dq理论,提出了模块化多电平换流器的无源解耦控制策略。针对送端电网换相换流器侧交流故障可能导致的功率中断等问题,从电网换相换流器和模块化多电平换流器的控制机理出发,分析了故障阶段及故障后的系统响应特性,并进而提出了送端交流故障穿越附加控制策略。为验证上述控制策略的有效性,在PSCAD/EMTDC内建立了一个LCC-MMC混合直流输电模型。通过受端电压频率变化和送端交流故障仿真,验证了所提控制策略的可行性和有效性。  相似文献   

11.
±800 kV特高压直流系统换流器控制   总被引:7,自引:4,他引:7  
马为民 《高电压技术》2006,32(9):71-74,110
±800 kV特高压直流系统采用双12脉动换流器串联的接线方式,为研究对其实施有效控制的方法,采用EMTDC仿真分析了双串联换流器的基本控制原理、投切单一换流器和其它各种故障后换流器的控制特性。结果表明,双换流器串联的直流系统仍可采用整流侧换流器控制直流电流,逆变侧换流器控制直流电压的基本运行控制策略。当对换流器独立控制时,加入误差消除环节能有效控制发散现象,保证特高压直流系统的稳定运行和各种故障下的运行性能。  相似文献   

12.
南澳多端柔性直流输电示范工程(简称为南澳柔直工程)是世界上第一个VSC-MTDC工程。介绍了南澳柔直工程的系统接入设计方案和换流站设计方案。该工程在南澳岛上建设2个直流送端换流站(金牛站和青澳站),在大陆塑城变电站附近建设1个直流受端换流站(塑城站)。将岛上的风电经柔直线路“青澳—金牛”和“金牛—塑城”送出,并在塑城变电站接入交流系统。通过三种方案的比较,决定换流站接地方式为:联接变压器采用△/Yn 形式,在阀侧设置Y接变压器中性点电阻以得到接地点。按功能分区明确、工艺流程紧凑、节能和协调周围环境的原则设计了换流站电气总平面布置方案。  相似文献   

13.
模块化多电平电压源换流器型高压直流输电采用子模块级联结构,解决了开关器件直接串联所带来的动态均压问题,同时具有输出电压波形品质高、开关频率和损耗低等诸多优点,因此成为极具市场应用价值的输电技术之一。在故障时,工作机理、调制策略和拓扑结构的差异导致系统呈现出与传统直流和电压源换流器型直流输电不同故障特性。分别以交流系统侧、阀侧和直流侧接地故障为例,在PSCAD/EMTDC中搭建仿真模型基础上,针对联接变压器绕组不同接线方式,分析其不同故障特性以及对系统运行的影响,并提出了应对策略。  相似文献   

14.
受直流断路器研制和多端协调困难的限制,电网换相换流器(line commutated converter,LCC)型多端直流系统发展十分缓慢。全控型器件和新型电压源换流器拓扑结构的出现,尤其是模块化多电平换流器(modular multi-level converter,MMC)的推广和应用,为多端直流的发展带来了新的机遇。本文针对能源基地的多落点电力外送问题,对三端直流的各种可行的组网方案进行了分析探讨,比较了它们的优劣。推荐使用结合LCC型和电压源换流器(voltage source converter,VSC)型的混合式多端直流输电方式,该方式既可规避受端换流站的换相失败风险,又可解决LCC型多端直流电流指令难以协调的难题,具有重大经济技术意义。  相似文献   

15.
一种新型的高压直流输电技术——MMC-HVDC   总被引:1,自引:0,他引:1  
介绍了模块化多电平换流器型高压直流输电(MMC-HVDC)的基本结构、工作原理和技术特点,比较了MMC-HVDC相对于电压源换流器型高压直流输电(VSC-HVDC)的优势;对MMC-HVDC目前在国内外的研究进展和工程应用情况进行了回顾,分析了MMC-HVDC技术的不足之处和未来发展中可能的重点方向,包括主电路拓扑的相关问题研究、系统设计、故障保护、接地、谐波和损耗等,指出目前研究所采用的MMC-HVDC分析模型精度较低;因自身拓扑限制,目前成熟的VSC-HVDC控制方法无法直接用于MMC-HVDC;MMC-HVDC拥有较强的故障保护能力,当前研究着重于故障仿真分析,亟待探讨适合工程应用的保护策略;由于直流侧无需安装高压电容器组,MMC-HVDC接地实现困难;由于MMC-HVDC子模块数较多,采用较低的开关频率可得到较好的输出电压波形,使得系统损耗大幅降低;最后探讨了适合我国国情的MMC-HVDC工程实践。  相似文献   

16.
直流融冰装置是电网应对冰雪灾害的重要设备,传统晶闸管器件的直流融冰技术存在无功消耗高、谐波含量大等问题,而基于全控器件的融冰技术存在装置容量和经济性不足问题。为发挥2种融冰装置自身优势,设计了一种由电网换相换流器(line commuted converter, LCC)和模块化多电平换流器(modular multilevel converter, MMC)共同组成的混合型直流融冰装置,其中MMC换流器采用全桥子模块和半桥子模块混合结构。依据不同线路长度和覆冰工况需求,设计了直流融冰装置工作模式的切换方案与协调控制策略;同时,设计了提高装置利用率的复用功能模式。通过MATLAB/Simulink仿真平台构建了LCC-MMC混合型直流融冰装置模型,对不用工况进行直流侧融冰能力及交流侧电流特性的仿真,结果表明,装置具有无功补偿、谐波抑制、融冰电流高等优点。  相似文献   

17.
为解决传统半桥型模块化多电平换流器(MMC)无法限制直流故障电流的问题,提出一种改进型子模块的MMC拓扑。与传统半桥型子模块拓扑不同,交流输出端口增加了阻断IGBT及其旁路吸收回路。本文首先分析改进型子模块的工作原理,在此基础上开展基于该子模块的MMC的故障限流机理及其主要功率开关器件的电气应力的研究,并通过仿真算例对所提出的拓扑进行了验证。仿真结果表明基于改进型子模块的MMC拓扑在原有正常模式下不需要改变控制策略与调制策略,而在故障阶段能够迅速实现故障电流阻断效果,通过引入旁路吸收回路,进一步降低了对电路触发脉冲一致性的要求,因此在未来高压直流输电系统领域具有良好的工程应用前景。  相似文献   

18.
“十四五”期间我国需要大力开发清洁能源基地,需要通过特高压直流输电技术实现远距离大容量输电,电网换相换流器(line commutated converter,LCC)串联模块化多电平换流器(modular multilevel converter,MMC)的混合型直流输电拓扑是一种非常有潜力的解决方案。为了验证该拓扑...  相似文献   

19.
采用双极架空线柔性直流输电技术进行大规模风电远距离外送是其友好型并网的有效手段.针对风电直流联网系统直流故障阻断和功率盈余问题,提出了一种改进电流转移型模块化多电平换流器(M-CT-MMC),使其同时具备直流故障阻断和能量耗散的功能,从而在充分发挥耗散电阻作用的同时实现直流故障穿越.在直流故障阻断方面,通过将M-CT-MMC桥臂吸收支路的引出线互联构造三相中性点,避免了桥臂开关额外承受直流电压偏置导致的成本增加问题,并利用辅助支路间的协调配合,有效阻断了直流故障电流.在盈余功率耗散方面,针对自消纳和非自消纳工况设计了双极M-CT-MMC控制模式切换策略,在提高非故障极功率转带能力的同时自主吸收盈余功率,并基于功率耗散需求设计了耗散电阻分组投切控制策略,避免非故障极M-CT-MMC过载,从而实现不同运行工况下风电直流联网系统的直流故障穿越.最后,基于MATLAB/Simulink仿真平台验证了所提直流故障阻断及盈余功率耗散协调控制策略的有效性和可行性.  相似文献   

20.
电网异步互联和可再生能源装机容量增加的现实需求,推动柔性直流输电系统已经达到3000MW的级别。当前,受功率半导体器件发展水平所限,需要设计组合式模块化多电平换流器(MMC)拓扑实现柔性直流输电系统的扩容。但是,不同组合方式下系统参数设计以及所适用IGBT器件类型差异很大,这对多变量下的组合式换流器损耗特性研究提出了挑战。本文首先提出了一种单台MMC的损耗计算方法,然后推导了组合式MMC的损耗计算解析表达式。在此基础上,对比分析了采用4500V/1500A和4500V/3000A IGBT器件的情况下,四种适用于±500kV/3000MW柔性直流输电换流器的组合式MMC拓扑损耗特性。PSCAD/EMTDC仿真结果表明,四种拓扑中并联式MMC拓扑的损耗最小,验证了损耗特性分析的正确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号