首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrathin LbL films based on protamine sulfate and pectins, including silver nanoparticles, have been obtained. Using the methods of quartz crystal microbalance and atomic force microscopy, the characteristics of the formed films are studied. It is shown that films based on pectin–Ag nanocomposites are elastic with a surface roughness of ≤3 nm, water content of <10 wt %, and bilayer thickness of ~5 nm.  相似文献   

2.
3.
Sulfide layer with certain thickness was made on the nitrided surface of 16Mn steel by means of plasma S-C-N composite treatment. Under half lubricated condition, friction coefficient and wear loss of LY12 aluminum alloy were measured in sliding against samples of 16Mn treated by cubrizing and sulphiding respectively; In order to avoid the transfer of aluminum to the steel that lead to the inaccurate measurement of wear loss of carburized samples, Grl5 steel was adopted as counterpart face to measure the wear loss of them. SEM and EDAX were used for the morphological and chemical characterization of the wear surface and longitudinal cross-sections beneath sliding surface of LY12 aluminum alloy cirque and the wear tacks of the carburized samples and sulphided samples. Results show: The surface roughness,wear rate, average friction coefficient and magnitude of friction fluctuations of LY12 aluminum alloy cirque sliding against sulphided sample were all lower than sliding against carburized sample; Compared with carburized layer, sulfide layer of 16Mn steel can not only efficiently prevent the occurrence of adhesion when sliding against LY12 aluminum alloy, but also greatly lower the wear loss when sliding against Gr15 steel.  相似文献   

4.
The structural state under varied conditions of thermal and thermomechanical treatment, the possibility of realization of a reversible martensitic transformation, and electrochemical behavior and corrosion resistance of iron and its bioresorbable alloys Fe–(23–30)–Mn–5Si in the solution simulating the liquid fraction of bone tissue of the human body have been investigated by means of electron-microprobe X-ray analysis, X-ray diffraction and metallographic analysis, differential scanning calorimetry, chronopotentiometry, potentiodynamic voltammetry, and gravimetry. It has been shown that the manganese content increase from 23 to 30 wt % results in the significant decrease of the temperatures of the start of the direct and the finish of the reverse martensitic transformation and the acceleration of the electrochemical corrosion. A dual role of silicon in formation of corrosion-electrochemical properties of the alloys has been grounded.  相似文献   

5.
The microstructure and mechanical properties of Mg–6Zn–1Y and Mg–6Zn–3Y(wt%) alloys under different cooling rates were investigated. The results show that the second dendrite arm spacing(SDAS) of Mg–6Zn–1Y and Mg–6Zn–3Y is reduced by 32 and 30% with increasing cooling rates(Rc) from 10.2 to 23 K/s, which can be predicted using a empirical model of SDAS=68 R 0:45:45cand SDAS=73 R 0c, respectively. The compressive strength of both alloys increases with increasing the cooling rate, which is attributed to the increase of volume fraction(Vf) of secondary phases under high cooling rate. The interaction of the cooling rate and component with SDAS has been theoretically analyzed using interdependence theory.  相似文献   

6.
Four kinds of Mg alloys with different Zn and Ca concentration were selected to analyze the effect of Zn and Ca concentration on the microstructure and the mechanical properties of Mg–Zn–Ca alloys. It was found that Zn and Ca concentration has a great influence on the volume fraction, the morphology and the size of second phase. The Mg–1.95Zn–0.75Ca(wt%) alloy with the highest volume fraction, continuous network and largest size of Ca2Mg6Zn3 phase showed the lowest elongation to failure of about 7%, while the Mg–0.73Zn–0.12Ca(wt%) alloy with the lowest volume fraction and smallest size of Ca2Mg6Zn3 phase showed the highest elongation to failure of about 37%. It was suggested that uniform elongations of the Mg–Zn–Ca alloys were sensitive to the volume fraction of the Ca2Mg6Zn3 phases, especially the network Ca2Mg6Zn3phases; post-uniform elongations were dependent on the size of the Ca2Mg6Zn3 phase, especially the size of network Ca2Mg6Zn3 phase. Reduction in Zn and Ca concentration was an effective way to improve the roomtemperature ductility of weak textured Mg–Zn–Ca alloys.  相似文献   

7.
Oxide films were formed on the biocompatible alloy Ti–13Nb–13Zr in a phosphate buffer at open-circuit potential (Eoc), potentiodynamically up to 8 V, or by micro-arc oxidation (MAO) at 300 V. Their electrochemical properties were assessed in a phosphate buffer saline solution (PBS). EIS and SEM results showed that the Eoc and potentiodynamically formed oxide films were compact and behave as a monolayer, while the MAO oxide was a bilayered film (compact inner and porous outer layers). Open-circuit potential and EIS resistance values indicated that the MAO oxide provides the best corrosion protection for the alloy in PBS.  相似文献   

8.
This paper reports TiC–(Ni–Cr) metal ceramic alloy(ratio of components 50:50) with nanoscaled components formed in the surface layer and smoothly transformed into the initial inner structure throughout the material under pulsed electron irradiation of the alloy surface. Principal changes in the surface layer are ascribed to the formation of gradient structure leading to the increase in wear resistance of the surface layer, drop of friction coefficient and improvement of specimen bending resistance when stressing on the irradiated surface side. The above changes of tribological and strength properties in the surface layer under pulsed electron irradiation become more apparent with increasing atomic mass of a plasma-forming inert gas.  相似文献   

9.
Protection of Metals and Physical Chemistry of Surfaces - Based on the concept of collective vibrations of ions in the bulk of metal systems, the frequency of vibrations of an oxygen molecule on...  相似文献   

10.
11.
Metals and Materials International - In this study, a binary Al–12Si, eight ternary Al–12Si–Sr, and six quaternary Al–12Si–0.1Sr–(0.2–1)Mg alloys were...  相似文献   

12.
In the present paper the effects of additions of Zr and Y on the microstructure and mechanical properties for Ti-(6.06.5)Al-(2.0~3.0)Sn-(1.5~6.0)Zr-(0.8~1.0)Mo-1.0Nb-0.25Si alloys are reported,The experimental results show that: with in-creasing of Zr content,tensile strength and creep resistance of the alloys increase,and reduction in area and thermal stability ofthe alloys decrease.Decrease in thermal stabiIity of the alloys mainly caused by surface thermal unstability.After heat treatmentY addition can make grain size of the alloys refine.The reduction in area and thermal stability of the alloys with Y addition areimproved,and tensile strength slightly decreases and creep resistance is essentially the same as the alloy without Y addition.Thesephenomena are explained in brief.  相似文献   

13.
The 1.1C–1.5Si–1.1Mn–1.4Cr–0.5Mo–0.6Al–0.6Co(in wt%) steel was treated, respectively, by isothermal austempering process and newly developed austempering–partitioning–tempering process(A–P–T). After austempering at250, 280 and 300 °C for 38, 20 and 10 h, respectively, the sample microstructures were composed of bainitic ferrite plates and film-like retained austenite with thicknesses between 60 and 150 nm. The highest tensile strength of 2003 MPa and hardness value of 53.9 HRC were obtained for the steel after austempering at 250 °C for 38 h, resulting from the combining effect of super-saturated martensite decarburization and stabilization of bainitic formation. After A–P–T treating(heated at 300 °C for 8 h following water cooling, and then heated at 300 °C for 2 h following air cooling),bamboo leaf-like martensite, primary and secondary bainites and retained austenite were observed. The thickness of the secondary bainitic ferrite plates formed during partitioning is much smaller than that of the primary bainite formed during300 °C austempering. Samples subjected to A–P–T treatment showed improvement in ductility compared to that subjected to austempering.  相似文献   

14.
In this work, the Mg–5Al–2Ca alloy was extruded at 573, 623 and 673 K, with a ratio of 16:1 and a constant speed of 3 mm/s. Results demonstrate that the Al2Ca particle is formed in Mg–5Al–2Ca alloy. The size, amount and distribution of Al2Ca particles are influenced evidently by extrusion temperature. Unlike previous reports, the intensity of basal texture increases with increasing extrusion temperature, and the reasons are analyzed and given. Even though the average grain size increases as the extrusion temperature increased from 573 to 623 K, the YS, UTS and elongation of asextruded Mg–5Al–2Ca alloy are almost kept the same at 573 and 623 K. The reason is speculated as the balance of grain size, Al2Ca phase and texture at the two temperatures. The work hardening rate depends on extrusion temperature, and the largest θ value of Mg–5Al–2Ca alloy is obtained when the extrusion was performed at 623 K.  相似文献   

15.
The structural and phase transformations in the Al–Li–Cu–Mg–Zr–Sc–Zn alloy have been studied by the electron microscopy after the aging for the maximum strength and in the nanostructured state after severe plastic deformation by high-pressure torsion. It has been shown that severe plastic deformation leads to the formation of a nanostructured state in the alloy, the nature of which is determined by the magnitude of deformation and the degree of completeness of the dynamic recrystallization. It has been established that deformation also causes a change in the phase composition of the alloy. The influence of the structural components of the severely deformed alloy on the level of mechanical properties, such as the hardness, plasticity, elastic modulus, and stiffness has been discussed.  相似文献   

16.
A series of Ni–Cr–Fe welding wires with different Nb and Mo contents were designed to investigate the effect of Nb and Mo on the microstructure, mechanical properties and the ductility-dip cracking susceptibility of the weld metals by optical microscopy(OM), scanning electron microscopy, X-ray diffraction as well as the tensile and impact tests. Results showed that large Laves phases formed and distributed along the interdendritic regions with high Nb or Mo addition. The Cr-carbide(M_(23)C_6) was suppressed to precipitate at the grain boundaries with high Nb addition. Tensile testing indicates that the ultimate strength of weld metals increases with Nb or Mo addition. However, the voids formed easily around the large Laves phases in the interdendritic area during tensile testing for the weld metal with high Mo content. It is found that the tensile fractographs of high Mo weld metals show a typical feature of interdendritic fracture. The high Nb or Mo addition, which leads to the formation of large Laves phases, exposes a great weakening effect on the impact toughness of weld metals. In addition, the ductility-dip cracking was not found by OM in the selected cross sections of weld metals with different Nb additions. High Nb addition can eliminate the ductility-dip cracking from the Ni–Cr–Fe weld metals effectively.  相似文献   

17.
DIFFUSION treatment could eliminate the porous inthe hot-dipped aluminum layers and promote thecombination of the profile with the matrix.On the otherhand,boron atoms could decrease the brittleness of theferro-aluminum alloyed layer.More luckily,thetemperature range for boronizing is consistent with thatfor diffusion treatment.Therefore,complex boronizingwas carried out on the hot-dip aluminized steels bydiffusion-treating at high temperature in order to furtherraise wear-resistance,anti-ox…  相似文献   

18.
The effects of Ti and La additions on the microstructures and mechanical properties of B-refined and Sr-modified Al–11Si alloys were investigated in the present work. The interactions among Ti, La, B and Sr elements were discussed employing microstructure observation, thermal analysis and tensile test, respectively. It was found that the addition of 0.05 wt% B induces a transformation of eutectic Si from finely fibrous to coarsely plate-like morphology in the Al–11Si alloy with 0.02 wt%Sr modification, owing to the poisoning of IIT mechanism, and the eutectic Si grows only with TPRE mechanism. Both titanium and lanthanum can neutralize the co-poisoning effect between Sr and B in the Al–11Si alloy, but the neutralizing effect of La is dependent on the addition sequence. The combinative addition of La and B elements promotes the effective refinement of α-Al grains, but an inhomogeneous modification of eutectic Si phases is also observed, leading to a slightly decrease in the elongation.  相似文献   

19.
The isothermal oxidation behaviour of a series of quinary Ni–Co–Al–Ti–Cr alloys were studied at 800 °C. Alloys with higher Cr concentrations exhibited lower mass gain after 100-h exposure, as did the alloys richest in Ni and Al for a given Cr concentration. Extensive internal oxidation and nitridation was also observed in all alloys, except those containing the highest concentrations of Ni and Al. All alloys studied generated continuous chromium oxide layers, beneath which alumina particles were observed. Compositional analysis of the subscales identified shallower Cr concentration gradients in alloys containing equiatomic levels of Ni and Co, suggesting increased availability of Cr in the alloy. Thermodynamic calculations confirmed that these alloys contained higher concentrations of Cr in their γ matrices as a result of a combination of both the elemental partitioning behaviour and the increased mole fraction of γ′ precipitates forming in the alloy.  相似文献   

20.
Protection of Metals and Physical Chemistry of Surfaces - The method of magnetron sputtering of a ZrB2–20% Si target was used to obtain coatings on substrates of molybdenum, chromium, and...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号