首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
旋风分离器芯管结构改进的试验研究   总被引:1,自引:0,他引:1  
马全  陈建义 《化工机械》2007,34(5):241-245
在PV型旋风分离器的基础上对其芯管结构进行了改进,并通过正交试验得到了一种新的斜切芯管结构。性能对比试验结果表明,当入口气速为20m/s时,相对于基准模型,改进结构的压降平均降低10%,跑损率降低15%。  相似文献   

2.
为了系统评价EII型旋风分离器的分离性能,探究了入口气速为6~20.5m/s,入口颗粒质量浓度为8.6~17.5g/m~3时,多管旋风分离器的分离效率和压降。结果表明:多管旋风分离器的分离效率随入口气速和入口颗粒质量浓度的增大而出现先升高后下降的趋势,多管旋风分离器的压降随入口气速的增大而增大。在相同实验条件下,与单个旋风子相比,多管旋风分离器的压降升高幅度为20%~25%,分离效率下降不大于2%,具有很好的细粉尘捕集能力。  相似文献   

3.
天然气净化用多管旋风分离器的分离性能   总被引:3,自引:0,他引:3  
为了系统评价天然气净化用多管旋风分离器的分离性能,在线测量了入口气速6~24 m/s、入口颗粒浓度30~2000 mg/m3范围内多管旋风分离器的分离效率和分级效率. 结果表明,多管旋风分离器的分离效率和分级效率都随入口气速和入口颗粒浓度增大而提高. 与单管旋风分离器相比,在相同实验条件下,多管旋风分离器的分离效率下降2%~15%;单管旋风分离器基本能除净粒径大于10 mm的颗粒,而多管旋风分离器只能去除15 mm以上的颗粒. 多管旋风分离器的压降主要是内部单管旋风分离器的压降,占整个压降的80%~90%.  相似文献   

4.
为了系统评价输气站场用多管导叶式旋风分离器的分离性能,模拟计算了入口速度7~27 m/s、颗粒密度1000~5000 kg/m3、颗粒浓度2.5~2500 g/m3、操作压力1~5 MPa条件下21管旋风分离器的分离效率和压降. 结果表明,多管旋风分离器的压降主要来自单管压降,约占整个压降的80%~90%,旋风子单独使用和并联使用时其流场分布规律相同,沿轴向对称分布,中心涡核处压力最低;分离效率和压降均随入口速度增大而增加,粒径为1~10 mm的固体颗粒分离效率从30.57%增加到63.86%,压降从9053 Pa增加到116864 Pa,在入口速度7~27 m/s范围内基本能除尽粒径大于6 mm的颗粒;随颗粒密度增加,分离效率增大,压降几乎不变;操作压力增大分离效率降低,而压降略增加. 各单管间进气量波动均不超过5%.  相似文献   

5.
基于开源软件OpenFOAM建立旋风分离器气固两相流数值计算模型,考察了二次风对旋风分离器性能的影响,比较了模拟结果与实验数据.结果表明,模拟结果与实验数据吻合度较好,压降和效率平均误差分别为9.89%和1.33%,模型可靠;二次风可有效削减二次流,减少上灰环和短路流,提高分离效率;二次风风速增加,旋风分离器的分级效率增加但增加速率逐渐降低.旋风分离器压降随二次风风速增加而增加,二次风入口速度达到15,25和30 m/s时,旋风分离器压降分别达到无二次风时压降的2,3和4倍,引入二次风同时应综合考虑能耗和效率.  相似文献   

6.
基于气固两相流和冲蚀理论对常规Stairmand旋风分离器和防磨型旋风分离器冲蚀规律进行了研究. 结果表明,对常规旋风分离器,其壁面冲蚀磨损速率从筒体顶端向下逐渐减小,在筒体L1/H1=0.8以下区域,磨损速率基本保持不变;在L1/H1=0.8以上区域,冲蚀磨损呈增大趋势,最大为2.3′10-6 kg/(m2×s);在锥体L2/H2=0.35以下区域,冲蚀速率逐渐减小;而在L2/H2=0.35以上区域呈逐渐增大趋势,在锥体顶端达最大值2.0′10-7 kg/(m2×s). 对防磨型旋风分离器,在筒体L1/H1=0.8以上区域,壁面最大冲蚀速率为0.5′10-6 kg/(m2×s),远小于常规旋风分离器. 在锥体从锥底向上冲蚀速率逐渐减小,在锥体顶端为0.4′10-7 kg/(m2×s),小于常规旋风分离器. 在小粒径范围内,分离效率随粒径增加而基本呈线性递增趋势. 粒径大于4 mm时,防磨型旋风分离器具有较高的分离效率. 压降随防磨板高度增加逐渐减小. A3型防磨分离器压降为360 Pa,小于常规分离器压降550 Pa. 为了降低旋风分离器壁面的冲蚀磨损,减少出口压降损失,粒径大于4 mm时,可选择最合理的B1型防磨分离器提高旋风分离器的防磨性能,从而延长使用寿命.  相似文献   

7.
为了优化旋风分离器的分离效率和能量损耗,确定影响旋风分离器性能的主要结构参数,采用响应曲面模型和CFD数值模拟,以排尘口直径(Dd)、排气口直径(De)、入口速度(V)为设计变量,以压降和总分离效率为目标函数,进行三因素的优化设计分析。研究结果表明,排尘口直径对压降和分离效率影响不大,排气口直径与速度对压降和分离效率影响显著,且排气口直径与速度的交互作用明显。针对本次0.5~10μm的颗粒群,推荐最优参数组合是De/D=0.35、Dd/D=0.37、V=12 m/s。与实验的结构相比,在相近的分离效率情况下,压降降低了一半,有效地减少了能耗。表明所建立的响应曲面模型能够较精确地表示设计变量与目标函数之间的关系,基于响应曲面模型的优化设计方法可以有效用于旋风分离器的结构优化。同时不同的粒径要求可以采用不同的结构进行除尘,在达到分离要求的前提下,采用最小压降的结构,本次研究为分离0.5~10μm粒径的结构提供有利的依据。  相似文献   

8.
在已有实验的基础上,结合大型冷模实验、流场实验和计算流体力学(CFD)模拟的结果,以压降和分离效率为综合评价指标,对后置烧焦管出口的气固分离器中心排气管位置(偏心)和中心排气管开缝形式进行了考察。结果表明,保持其它尺寸与基准型分离器一致而中心排气管改为切向开缝形式的分离器,既能保持分离效率不低于基准型分离器,又能降低压降,在实验条件下压降不超过1 900 Pa,分离效率大于98%  相似文献   

9.
张爱琴  王兴东  张建广  卢竹青 《粘接》2022,(4):79-83+97
针对催化裂化三旋多管式旋风分离器存在的整体效率偏低的问题,文章开展旋风分离器并联结构优化的尝试,采用实验的方法研究4台切流式PV型旋风分离器并联后的分离性能。结果表明,并联旋风分离器的分离性能要高于单台旋风分离器,但仍存在着继续改进的空间。  相似文献   

10.
罗晓兰  易伟  张海玲  魏耀东 《化工学报》2010,61(9):2417-2423
基于Muschelknautz 分离模型,以PV型旋风分离器为对象,针对高入口浓度的分离效率的计算,将旋风分离器分离空间的气固分离过程划分为2个区域,提出了串级分离模型。当入口浓度大于临界入口浓度时,旋风分离器内有器壁附近的颗粒支配区和中心区域的气体支配区。颗粒支配区内颗粒速度大于气体速度,颗粒夹带气体沿器壁螺旋下行进入灰斗被全部捕集,形成了颗粒的一级分离;气体支配区内气体速度大于颗粒速度,气体携带颗粒做旋转运动进行离心分离过程,形成了颗粒的二级分离。旋风分离器总的气固分离过程是一级分离和二级分离的叠加。通过高入口浓度的实验对串级分离模型进行了验证,基于串级分离模型给出的PV型旋风分离器的分离效率与实测值较吻合。研究表明旋风分离器临界入口浓度对总效率的计算影响较大。串级分离计算模型包含了结构参数和气、固相物性等参数,具有很好的通用性,可以满足PV型旋风分离器的工程计算和设计要求。  相似文献   

11.
基于响应曲面法的旋风分离器结构优化   总被引:2,自引:0,他引:2       下载免费PDF全文
熊攀  鄢曙光  刘玮寅 《化工学报》2019,70(1):154-160
为了优化旋风分离器的分离效率和能量损耗,确定影响旋风分离器性能的主要结构参数,采用响应曲面模型和CFD数值模拟,以排尘口直径(Dd)、排气口直径(De)、入口速度(V)为设计变量,以压降和总分离效率为目标函数,进行三因素的优化设计分析。研究结果表明,排尘口直径对压降和分离效率影响不大,排气口直径与速度对压降和分离效率影响显著,且排气口直径与速度的交互作用明显。针对本次0.5~10 μm的颗粒群,推荐最优参数组合是De/D=0.35、Dd/D=0.37、V=12 m/s。与实验的结构相比,在相近的分离效率情况下,压降降低了一半,有效地减少了能耗。表明所建立的响应曲面模型能够较精确地表示设计变量与目标函数之间的关系,基于响应曲面模型的优化设计方法可以有效用于旋风分离器的结构优化。同时不同的粒径要求可以采用不同的结构进行除尘,在达到分离要求的前提下,采用最小压降的结构,本次研究为分离0.5~10 μm粒径的结构提供有利的依据。  相似文献   

12.
丙烯腈反应器新型两级旋风分离器大型冷模试验研究   总被引:2,自引:0,他引:2  
陈建义  时铭显 《化工机械》2001,28(5):249-254
针对丙烯腈装置扩能的要求 ,分析了用新型两级旋风分离器取代原三级旋风分离器的必要性 ,采用PV型和PV E型旋风分离器组成新型两级旋风分离器。根据旋风分离器尺寸分类优化设计法 ,设计了一种工业尺寸规模的两级旋风分离器 ,并将它和Ducon型三级旋风分离器在冷态条件下进行了对比试验。结果表明 ,新型两级旋风分离器不仅性能优异 ,而且结构简单、占据空间小、工作可靠 ,适合现有丙烯腈装置扩能改造的需要。  相似文献   

13.
利用雷诺应力模型(RSM)和离散相模型(DPM)对不同高度圆柱段的4种Stairmand型旋风分离器模型(A1、A2、A3、A4)进行了流场、压降和分离效率的计算分析。结果表明:增加圆柱段高度,压降显著降低,收集效率略有提高;在入口速度为18m/s条件下,与模型A1相比模型A2、A3、A4的压降分别降低了约8. 35%、18. 63%、35. 33%,分离效率分别提高了约4. 9%、2. 6%、4. 1%;同时表明了旋风分离器以其设计入口速度稳定运行的重要性。  相似文献   

14.
为提高旋风式油气分离器在变工况下的分离效率,提出了多层分离结构的旋风分离器,对该结构的分离性能进行了数值模拟和实验研究。在入口气速较大时(12~13 m?s?1),三种不同分离结构的旋风分离器分离效率基本相同,但对于出口处直径为2~5μm的小油滴数量,具有三层分离结构的旋风分离器的比单层分离结构的旋风分离器减少了77.2%~51.0%;在入口气速较小时(7~8m?s?1),具有三层分离结构的旋风分离器分离效率比单层分离结构的旋风分离器提高约24.1%。在所有测试工况下,三层分离结构的旋风分离器的压力损失比单层分离结构的旋风分离器降低了35%~45%。上述研究结果表明,三层分离结构的旋风分离器压力损失小,低负荷时分离效率高,高负荷时对较小油滴分离效果好,即三层分离结构的旋风分离器在变工况时均保持较高的分离性能。  相似文献   

15.
天然气净化用旋风分离器气液分离性能   总被引:4,自引:3,他引:1  
吴小林  熊至宜  姬忠礼 《化工学报》2010,61(9):2430-2436
为了系统评价天然气净化用旋风分离器在含液量低时的气液分离性能,利用滤膜采样称重法和Welas在线测量法测量了旋风分离器在入口气速8~24 m·s-1、入口液体浓度0.1~2 g·m-3时的分离效率和粒径分布;对比了相同入口浓度下旋风分离器气液分离性能和气固分离性能的异同。实验结果表明,在入口气速为8~24 m·s-1、入口液体浓度为0.1~2 g·m-3时,旋风分离器的气液分离效率随着入口气速和入口液体浓度的增加而增大,而出口粒径分布范围变化很小;与气固分离相比,在相同的入口气速和入口浓度下,旋风分离器的气液分离效率要高2%~6%;另外,气液分离时出口液滴粒径不大于4 μm,而气固分离时出口有大于10 μm固体颗粒存在。  相似文献   

16.
大浓度范围内PV型旋风分离器粒级效率的计算方法   总被引:1,自引:2,他引:1  
探讨了旋风分离器入口含尘浓度对其分离性能及粒级效率的影响机理。对旋风分离器内部气固两相运动进行了相似分析,得到了包括入口含尘浓度在内的一系列影响分离性能的相似准数。通过相似试验及试验数据的多元回归分析,建立了各相似准数与粒级效率的关系,得出了能精确估计大浓度范围内PV型旋风分离器粒级效率的计算公式。  相似文献   

17.
采用流体力学软件对不同结构径向入口旋风分离器的气固两相流场进行了数值模拟,并基于响应曲面法得到旋风分离器的压降模型及分离效率模型。结果表明升气管直径和入口角度对旋风分离器的分离性能影响较大,且两者对旋风分离器分离性能的影响有着很强的交互作用;直筒段高度、锥体高度及升气管插入深度对分离性能影响相对较弱;下降管直径对分离效率影响较大,但对压降影响较弱;随着下降管长度的增大,压降不断增大,分离效率先减小后增大;在考虑压降及分离效率权重的基础上,得到了最优性能的旋风分离器结构,通过比较该结构旋风分离器的分离性能,发现模拟值和模型预测值吻合良好。  相似文献   

18.
采用ANSYS-FLUENT数值模拟,分析了旋风分离器内压力分布和流场速度分布,对比不同气速和不同圆柱直径对旋风分离器分离率的影响。结果表明:旋风分离器的分离效率在一定范围内会随着气速的增大而增加,达到一定值后分离效率会降低;针对一种新型旋风筒结构,将其圆筒直径从5.8 m减小到5.0 m,旋风分离器的分离效率提高。  相似文献   

19.
R-S型旋风分离器是在对旋风分离器出口管研究的基础上,充分利用气流的旋转能。开发出的一种由返流式旋风分离器在直流式旋风分离器优化组合的新结构。试验结果表明,该设备在压降相近的条件下,分离效率优于二级串联的旋风分离器,与三级串联旋风分离器的分离效率盯近,而压降仅为它的60%。工业应用实践表明,在漂粉精生产装置中,该设备可取代脉冲布袋除尘器、用作振动流化干燥造粒装置尾气的粉尘捕集设备,捕集效率达98%  相似文献   

20.
一种特殊进口导流管的新型高效旋风分离器   总被引:4,自引:0,他引:4  
本文基于对现有旋风分离器流场的分析,提出了一种具有特殊进口导流管能抑制上涡流干拢的新型高效旋风分离器,该旋风分离器具有结构简单、分离效率高及操作弹性大的特点。并利用电子计算机进行回归计算,建立了压降及分离效率的关联式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号