首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
简要介绍车用发动机废气再循环(EGR)技术的工作原理、评价指标EGR率、控制方法和EGR率对排放的影响,提出废气再循环系统的改进措施。  相似文献   

2.
废气再循环(EGR)系统可以有效地降低燃气发动机热负荷、爆燃风险及氮氧化物(NOx)排放量,具有提高发动机经济性的作用。单向阀作为EGR系统的一个重要部件,可以起到提升发动机低转速段扭矩和降低发动机气耗的作用。对比EGR系统有无单向阀时对燃气发动机性能的影响,验证A、B两款单向阀对于提升发动机性能所起的作用,以及在燃气发动机复杂工况条件下自身的可靠性。使得结论可为燃气发动机匹配合适的EGR单向阀提供参考。  相似文献   

3.
基于GT-Power软件搭建液化天然气(LNG)发动机与重整器闭环运行仿真模型,探究废气重整再循环率(REGR率)及重整器内CH4与O2体积分数比n对重整器与发动机性能的影响.结果表明:重整产物中H2体积分数随REGR率增大而降低,且随着n增加而增大;随着REGR率增大,缸压峰值降低,火焰发展期与燃烧持续期增加,NOx排放降低,且在10%REGR率左右达IMO TierⅢ排放限值标准;与废气再循环(EGR)模式相比,REGR模式下缸压峰值增加,火焰发展期与燃烧持续期缩短,热效率增加,燃油消耗率(BSFC)下降,HC排放降低.该研究结果可为发动机与重整器匹配运行以实现船用LNG发动机污染物排放控制提供参考.  相似文献   

4.
以增压中冷二甲醚发动机为对象,研究废气再循环(EGR)对发动机动力性、经济性和排放特性的影响。试验结果表明:在宽广的负荷范围内采用EGR可大幅度降低二甲醚发动机的排放;发动机EGR率为4.8%~7.5%时,ESC循环试验中的CO、HC和NOx排放均可满足国-Ⅳ排放标准的限值;采用5.5%~8.7%EGR率后,发动机动力性能稍有下降,但下降的幅度较小,发动机在低转速下动力性能受EGR的影响大于在中、高转速时受到的影响;EGR率为5.5%~8.7%时,发动机中、低负荷下的燃料消耗率基本不变,高负荷工况下燃料消耗率升高1.0%~3.8%。  相似文献   

5.
以一台增压二甲醚发动机为研究对象,研究废气再循环(EGR)对二甲醚发动机性能和排放的影响.试验结果表明,EGR率增大,进气量减少.低负荷下,适当的EGR量会使发动机的油耗率降低.在中高负荷下,EGR的加入会导致油耗率增大,经济性恶化.随着EGR率的增加,发动机Nox排放大幅度下降,高负荷时下降幅度更大.EGR率增大,HC排放上升.EGR率在一定范围内时,EGR率对CO排放影响不大,但当EGR率超过一定范围时,EGR率增加会引起CO排放急剧加大.EGR率对二甲醚发动机的碳烟排放影响不大,碳烟排放测试值保持为零.在二甲醚发动机上采用废气再循环,没有碳烟增大的压力,确定各工况下的最佳EGR率时,只需在Nox排放和燃油经济性以及CO之间进行折中.低负荷时可以采用大的EGR率,高负荷时EGR率不宜过大.  相似文献   

6.
引言 根据中国汽车技术研究中心于1990年5月对国产汽车排放现状的普测结果,CA6102汽油机CO排放性能较好,但HC和NO_x排放严重超标,因此净化NO_x和HC是改善CA6102发动机排放性能的当务之急。  相似文献   

7.
针对某国Ⅵ天然气发动机各缸燃烧一致性差异过大的问题,利用计算流体力学(CFD)软件STAR-CCM+对该发动机的进气管路开展废气再循环(exhaust gas recirculation,EGR)率均匀性分析,发现第1缸~第3缸的EGR率高于第4缸~第6缸,1 200r/min全负荷工况EGR率相对偏差为-29.9%~34.2%。分析表明,EGR的引出方式为第1缸~第3缸单侧取气,导致EGR进气入口存在较大波动,是造成各缸EGR率分配不均的主要原因。从降低管路内EGR废气波动的角度提出了两种进气管路优化方案,使EGR废气在进入稳压腔之前得到了充分混合,各缸EGR率均匀性得到明显提高,EGR率相对偏差在±5%以内。  相似文献   

8.
废气再循环是控制发动机氮氧化物排放的一项重要技术,本文全面论述了柴油发动机的废气再循环技术及其对发动机的影响,提出了一些今后的研究方向。  相似文献   

9.
基于正庚烷、甲烷、乙烷、丙烷多组分混合物简化动力学机理耦合三维计算流体力学(computational fluid dynamics,CFD)数值模型,模拟研究高替代率时不同进气氛围(H2、O2组分)耦合废气再循环(exhaust gas recirculation,EGR)对天然气/柴油双燃料发动机低负荷工作过程的影响机理。研究表明:在不同EGR率下,进气掺氢会使缸内燃烧速率显著加快,OH活性基浓度明显升高,CH4排放显著降低,但CO排放升高;进气掺氧后,缸压及瞬时放热率峰值、最大压力升高率、最高燃烧温度及OH活性基浓度均升高,碳烟、CO和CH4后期氧化作用增强使其最终排放降低,但NOx排放升高。在EGR率小于29%,掺氢比小于2.5%时,在实现较低CO、碳烟排放的同时能显著降低CH4排放和NO2/NOx比例;高EGR率时,进气掺氧能降低CO、碳烟排放,并改善CH4与NOx  相似文献   

10.
废气再循环(EGR)在内燃机中的应用   总被引:2,自引:0,他引:2  
本文阐述了内燃机中废气再循环(EGR)系统降低NOx的基本原理和NOx的生成途径与机理。指出了双燃料发动机中应用EGR的优点。简述了冷却废气再循环的原理及其国内此项技术的发展方向。  相似文献   

11.
周斟 《江西能源》2005,(3):27-29
本文回顾了废气再循环(EGR)在减少排放,特别是减少NOx排放上的潜力以及限定这一技术的应用范围。详细分析了RGR装置对柴油机的排放和性能的影响,通过深入分析,发现在柴油机进气中引入废气再循环(EGR),相当如置换了部分吸入的空气,这种方式能充分减少NOx的排放。因此,废气再循环的使用是最有效改善尾气排放的技术措施之一。  相似文献   

12.
With an alarming enlargement in vehicular density, there is a threat to the environment due to toxic emissions and depleting fossil fuel reserves across the globe. This has led to the perpetual exploration of clean energy resources to establish sustainable transportation. Researchers are continuously looking for the fuels with clean emission without compromising much on vehicular performance characteristics which has already been set by efficient diesel engines. Hydrogen seems to be a promising alternative fuel for its clean combustion, recyclability and enhanced engine performance. However, problems like high NOx emissions is seen as an exclusive threat to hydrogen fuelled engines. Exhaust gas recirculation (EGR), on the other hand, is known to overcome the aforementioned problem. Therefore, this study is conducted to study the combined effect of hydrogen addition and EGR on the dual fuelled compression ignition engine on a single cylinder diesel engine modified to incorporate manifold hydrogen injection and controlled EGR. The experiments are conducted for 25%, 50%, 75% and 100% loads with the hydrogen energy share (HES) of 0%, 10% and 30%. The EGR rate is controlled between 0%, 5% and 10%. With no substantial decrement in engine's brake thermal efficiency, high gains in terms of emissions are observed due to synergy between hydrogen addition and EGR. The cumulative reduction of 38.4%, 27.4%, 33.4%, 32.3% and 20% with 30% HES and 10% EGR is observed for NOx, CO2, CO, THC and PM, respectively. Hence, the combination of hydrogen addition and EGR is observed to be advantageous for overall emission reduction.  相似文献   

13.
基于一台带有低压废气再循环系统的1.5 L涡轮增压直喷汽油发动机进行了稀燃和废气再循环(EGR)影响发动机燃烧性能的试验研究。结果表明,随着稀释率的上升,EGR和稀燃均导致发动机滞燃期、燃烧持续期延长,燃烧重心提前,有效燃油消耗率下降,排气温度下降,平均绝热指数上升。相同稀释率下,相比稀燃,EGR的滞燃期长,燃烧重心提前,两者燃烧持续期基本相等,稀释极限低,绝热指数小,排气温度低。在稀释率分别为20%、35.9%时,最大可减小有效燃油消耗率4.7%、7.2%。热容对燃油经济性的影响占主导地位,相同稀释率下,循环变动系数小于3%时,相比稀燃,EGR具有更好的燃油经济性。  相似文献   

14.
The effects of exhaust gas recirculation (EGR) on combustion and emissions under different hydrogen ratios were studied based on an engine with a gasoline intake port injection and hydrogen direct injection. The peak cylinder pressure increases by 9.8% in the presence of a small amount of hydrogen. The heat release from combustion is more concentrated, and the engine torque can increase by 11% with a small amount of hydrogen addition. Nitrogen oxide (NOx) emissions can be reduced by EGR dilution. Hydrogen addition offsets the blocking effect of EGR on combustion partially, therefore, hydrogen addition permits a higher original engine EGR rate, and yields a larger throttle opening, which improves the mechanical efficiency and decreases NOx emissions by 54.8% compared with the original engine. The effects of EGR on carbon monoxide (CO) and hydrocarbon (HC) emissions are not obvious and CO and HC emissions can be reduced sharply with hydrogen addition. CO, HC, and NOx emissions can be controlled at a lower level, engine output torque can be increased, and fuel consumption can be reduced significantly with the co-control of hydrogen addition and EGR in a hydrogen gasoline engine.  相似文献   

15.
Two dilution strategies, exhaust gas recirculation (EGR) with a stoichiometric mixture and excess air with a lean mixture, were investigated for an 11 L, 6-cylinder H2-blended compressed natural gas (HCNG) engine. The engine was operated at 1260 rpm and 50% of maximum engine load (575 Nm) at maximum brake torque for each strategy. To evaluate the EGR approach, the stoichiometric combustion mode was varied, and to evaluate the lean combustion mode, the excess air ratio was varied. The maximum EGR rate and lean flammability limit were constrained by the combustion stability. The dilution rate was employed to compare the dilution effect on engine performance and emission levels under identical levels of the dilution for both combustion modes. The thermal efficiencies under stoichiometric combustion with EGR were lower than those under lean combustion, owing to a higher pumping loss and a lower combustion speed. The total hydrocarbon emissions under the lean combustion mode were lower than those under the stoichiometric combustion mode only when the combustion speed was relatively slow, due to the higher mixing rate caused by the active combustion. As the dilution rate was increased in the lean combustion mode, the rate of decrease in NOx emissions slowed compared to the stoichiometric combustion mode. The lowest level of engine-out NOx emissions was observed under lean combustion.  相似文献   

16.
In this experimental study, hydrogen was inducted along with air and diesel was injected into the cylinder using a high pressure common rail system, in a single cylinder homogeneous charge compression ignition engine. An electronic controller was used to set the required injection timing of diesel for best thermal efficiency. The influences of hydrogen to diesel energy ratio, output of the engine and exhaust gas recirculation (EGR) on performance, emissions and combustion were studied in detail. An increase in the amount of hydrogen improved the thermal efficiency by retarding the combustion process. It also lowered the exhaust emissions. Large amounts of hydrogen and EGR were needed at high outputs for suppressing knock. The range of operation was brake mean effective pressures of 2–4 bar. The levels of HC and CO emitted were not significantly influenced by the amount of hydrogen that was used.  相似文献   

17.
This paper expands the consideration of the factors affecting the nanostructure and oxidative reactivity of diesel soot to include the impact of exhaust gas recirculation (EGR). Past work showed that soot derived from oxygenated fuels such as biodiesel carries some surface oxygen functionality and thereby possesses higher reactivity than soot from conventional diesel fuel. In this work, results show that EGR exerts a strong influence on the physical properties of the soot which leads to enhanced oxidation rate. HRTEM images showed a dramatic difference between the burning modes of the soot generated under 0 and 20% EGR. The soot produced under 0% EGR strictly followed an external burning mode with no evidence of internal burning. In contrast, soot generated under 20% EGR exhibited dual burning modes: slow external burning and rapid internal burning. The results demonstrate clearly that highly reactive soot can be achieved by manipulating the physical properties of the soot via EGR.  相似文献   

18.
在柱状燃烧室内利用C anon数码相机跟踪研究了气泡雾化喷嘴出口下游的旋流液雾火焰,发现再循环烟气对油雾颗粒的预热作用使火焰缩短、并有效削弱了高温区存在;利用T esto350烟气分析仪对液雾旋流火焰所产生的烟气成分进行了测定,探讨了烟气再循环措施对不完全燃烧产物以及燃烧污染物生成量的影响,发现热烟气的再循环可以有效降低不完全燃烧产物的排放量,同时可以抑制NOx的生成。  相似文献   

19.
H.E. Saleh 《Renewable Energy》2009,34(10):2178-2186
Jojoba methyl ester (JME) has been used as a renewable fuel in numerous studies evaluating its potential use in diesel engines. These studies showed that this fuel is good gas oil substitute but an increase in the nitrogenous oxides emissions was observed at all operating conditions. The aim of this study mainly was to quantify the efficiency of exhaust gas recirculation (EGR) when using JME fuel in a fully instrumented, two-cylinder, naturally aspirated, four-stroke direct injection diesel engine. The tests were carried out in three sections. Firstly, the measured performance and exhaust emissions of the diesel engine operating with diesel fuel and JME at various speeds under full load are determined and compared. Secondly, tests were performed at constant speed with two loads to investigate the EGR effect on engine performance and exhaust emissions including nitrogenous oxides (NOx), carbon monoxide (CO), unburned hydrocarbons (HC) and exhaust gas temperatures. Thirdly, the effect of cooled EGR with high ratio at full load on engine performance and emissions was examined. The results showed that EGR is an effective technique for reducing NOx emissions with JME fuel especially in light-duty diesel engines. With the application of the EGR method, the CO and HC concentration in the engine-out emissions increased. For all operating conditions, a better trade-off between HC, CO and NOx emissions can be attained within a limited EGR rate of 5–15% with very little economy penalty.  相似文献   

20.
基于天然气发动机废气控制阀控制机理,试验研究不同结构原理下的废气控制阀的性能指标,通过综合对比分析发现:废气控制阀样件A与增压器性能匹配最佳,增压高效区为R PWM=15%~75%,为优化标定发动机的低速性能及增压器的瞬态响应提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号