首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
张翔  刘健  毕红 《安徽化工》2016,42(6):24-28
氮掺杂多孔碳(NPC)电极材料具有特殊的多孔结构,导致其比表面积高,化学稳定性好,同时电容性能良好,然而导电性差,能量密度低等因素也限制了其实际应用。以天然产物为碳源,经高温热解产生碳化残渣,将这些残渣经筛分,与氢氧化钾和三聚氰胺一起混合、研磨,然后再经过高温焙烧、洗涤、烘干后得到NPC样品。该样品外观为黑色粉末,在扫描电镜下观察其形貌呈现多孔状,氮元素含量达到6.45wt%。将NPC与乙炔黑、聚偏氟乙烯按8∶1∶1的质量比制成电极压片,可组装成对称型超级电容器。在两电极体系下,以6M KOH为电解液,通过恒电流充放电(GCD)和循环伏安(CV)测试表明:电流密度为0.1A/g时,组装的超级电容器的比电容达到145F/g,而且当功率密度为50W/kg时,能量密度可达到20Wh/kg。经1000次循环充放电后,其比电容仍然保持96.9%,库仑效率基本稳定在99%,说明NPC具有优良的电容特性和循环稳定性。  相似文献   

2.
《辽宁化工》2021,50(7)
氮掺杂多孔炭材料作为电荷存储和电子传输载体,在储能、催化等领域有重要应用,已成为炭材料领域的研究热点之一。通过煤沥青分子结构设计,引入具有亲水性羧基官能团,利用羧基与氮原子配位作用,成功制备了不同微观结构和表面形貌特征的氮掺杂炭材料。实验研究表明,氮掺杂多孔炭材料氮的质量分数为4.99%,氮的化学键合态以石墨氮(N-Q)和吡啶氮(N-6)为主,占比为72.9%。氮原子的引入,显著提升炭材料的电化学性能。在1A·g~(-1)电流密度下,电极材料的比容量为371.6 F·g~(-1),当电流密度增加到10 A·g~(-1)时,比容量为269 F·g~(-1),容量保持率为72.4%。  相似文献   

3.
本论文结合电化学理论内容,设计关于超级电容器电极材料的研究型物理化学实验,采取理论联系实际的教学方式介绍电极材料的制备方法及电化学性能测试原理。使学生更加直观地了解物理化学的前沿热点及先进的研究方法,激发学生的科学研究兴趣,培养学生的实践能力。  相似文献   

4.
以间苯二酚-甲醛(RF)作为碳源,利用具有中空结构的聚苯乙烯球(PS)作为模板,在高温下碳化得到三维层次多孔碳。采用扫描电镜、循环伏安及恒流充放电等方法对其性能进行测试。结果表明,层次多孔碳在高倍率条件下具有优异的电化学性能。  相似文献   

5.
肖巍  鲜小彬  梁果  杨欣雨  张艳华 《化工进展》2023,(11):5871-5881
紫菜不仅廉价易得,而且富含蛋白质。以紫菜为原料,提供炭源和氮源,先预炭化获得粗炭,再以KOH活化造孔实现氮掺杂分级多孔炭材料的制备。当KOH与粗炭比为2∶1时所获得的氮掺杂多孔炭材料(NDHPC-2)具有最丰富孔隙和最佳蜂窝状分级孔结构,其比表面积高达1975.2m2/g,介孔占比41.2%,掺氮原子含量4.3%。此外,电化学测试表明,三电极体系中NDHPC-2的最大比电容为185.4F/g,同时兼具良好倍率性能、库仑效率和循环稳定性。基于此炭材料,进一步组装了NDHPC-2//NDHPC-2对称超级电容器,单个器件最大能量密度为6.7Wh/kg,并依旧保持了出色的倍率性质、库仑效率和反复充放电稳定性。比如在10A/g高电流密度下连续充放电10000次,整个实验过程的库仑效率始终接近100%,电容损失亦几乎可忽略不计。无论三电极还是两电极体系,NDHPC-2多孔炭材料的超级电容性能均可媲美甚至超过许多已报道的生物质多孔炭材料的电化学表现,展现了较好的储能优势和实际应用潜能。  相似文献   

6.
本文通过在碳前驱体中引入质子交联剂—盐酸,并经过后续模板法制备多孔碳材料并研究其超电容性能。研究表明,盐酸交联剂的引入,显著提高多孔碳的孔结构,比表面积由635 m2·g-1提升至830 m2·g-1。电化学测试表明,采用盐酸交联法制备的多孔碳材料表现出更加优异的超电容性能,在硫酸电解液1 A·g-1的电流密度下,比电容达到236 F·g-1;同样在活性电解液在2 A·g-1的电流密度下,比电容达到惊人的1 298 F·g-1。  相似文献   

7.
8.
以柚子皮为碳源(GC),高温氧化碳化(GCO)处理后采用K2CO3活化制得GCO600,最佳优化产物GCO600-14具有丰富的网状孔隙,其比表面积达661.7 m2/g。三电极体系中,在1 A/g时,GCO600-14的比电容为413 F/g,电流密度扩大30倍后仍可达到2 896 F/g,为原先的70%;循环5 000圈后比电容仍未原来值的96%。构建的对称性电容器GCO600-14//GCO600-14能量密度为26、20.2 (W·h)/kg时,相应的功率密度分别为720、20 800 W/kg。说明GCO600-14作为新型的、环境友好的储能材料具有潜在的应用前景。  相似文献   

9.
以乙酸铜、三聚氰胺为原料,采用溶剂热法合成三聚氰胺铜超分子化合物.以超分子化合物为前驱体通过一步热解,制备CuO/氮掺杂多孔碳材料.采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱仪(XPS)和比表面仪对材料的结构与形貌进行表征.结果 表明:超分子化合物在500℃热解后,CuO纳米粒子均匀负载在氮...  相似文献   

10.
《山东化工》2021,50(17)
电解液是超级电容器不可或缺的重要组成部分,水系电解液由于导电率高、安全性好且成本低而被广泛使用。本文以商品化碳分子筛为前驱体,采用KOH活化法制备了一种多孔碳材料AMS,并研究了其在KOH、K_2SO_4、KNO_3、NaNO_3、LiNO_3、KCl等6种水系电解液中的电化学性能。 AMS在KOH电解液中具有108 F·g~(-1)的高比容量,在5 A·g~(-1)的高电流密度下比电容为85 F·g~(-1),电容保持率为78%。发现电解质水合离子尺寸、离子电导率是影响AMS在水系电解液中电容性能的主要因素,水合离子尺寸越小、电解质离子导电性越大,电极材料更容易获得优异的电容性能。  相似文献   

11.
通过精确控制葡萄糖的摩尔反应比,采用水热结合低温烧结法制备了多孔球状黑锰矿结构Mn3O4.当高锰酸钾与葡萄糖比例为1∶3(MNO-3)时,具有最优性能.SEM结果显示最优样品具有多孔球状结构,粒径大小均匀,约为1 ~4 μm.运用恒流充放电、交流阻抗、循环伏安等电化学测试方法研究其电容特性和电化学性能.结果 表明:在6 mol·L-1KOH电解质溶液中,电流密度为1A·g-1的条件下MNO-3样品具有最高比容量321.7 F·g-1,循环400圈后,其比容量保持率为97.15%.  相似文献   

12.
付国瑞  胡中爱 《广东化工》2013,40(1):24-25,2
以镍箔为基底,在Ni(NO3)2溶液中,用电沉积法制备Ni(OH)2薄膜,进行热处理后转化为NiO薄膜电极材料。采用X射线衍射(XRD)和场发射扫描电子显微镜(FESEM)表征产物的结构和形貌。用循环伏安法、恒电流充放电等电化学方法系统研究所制样品的电化学性能。研究结果表明,在Ni(NO3)2溶液浓度为0.08 mol.L-1,电压为-0.9 V条件下沉积,并经过250℃热处理制备的NiO薄膜材料属于立方结构,表现出良好的电化学性能,其单电极比电容值达1220 F.g-1。  相似文献   

13.
14.
利用静电纺丝技术,将聚苯乙烯(PS)、聚甲基丙烯酸甲酯(PMMA)与聚丙烯腈(PAN)纺丝原液混合,电纺得到高分子纤维膜,再结合高温碳化技术得到一维多孔PAN基碳纤维。通过X射线衍射(XRD)、差热热重(TG-DSC)、傅里叶变换红外光谱(FT-IR)和扫描电子显微镜(SEM)等对所制备电极材料的结构和形态进行了系统表征,同时将其组成三电极体系研究电化学性能。结果表明:当纺丝原液中nPAN∶nPS=60∶1时,其在电流密度为0.5 A/g下的比电容值为339.23 F/g;当纺丝原液中n PAN∶n PMMA=40∶1时,其在电流密度为0.5 A/g下的比电容值为314.54 F/g,比纯PAN基碳纤维的比电容值有所上升;同时,在循环充放电2000圈后,初始比电容的保持率分别达95.5%和94.6%,展示出了良好的电容性能和循环性能。  相似文献   

15.
并流沉淀法合成氧化镍及其电容性能   总被引:1,自引:1,他引:0  
陈野  刘良  张尊波  向琪 《精细化工》2008,25(5):424-427
以硝酸镍和碳酸铵为原料,采用并流沉淀法得到碱式碳酸镍前驱体,经300℃热处理后得到NiO。X射线衍射分析表明,其衍射峰位置分别为37.2°、43.2°和62.8°,与标准图谱比照,所制样品为立方相的NiO。按m(NiO):m(乙炔黑):m(聚四氟乙烯)=75:15:10制备电极材料,在电解液c(KOH)=5mol.L-1的三电极体系中,通过循环伏安、交流阻抗和恒流充放电对其超级电容性能进行了考察。不同扫速循环伏安曲线表明,该材料具有典型的超级电容特性;交流阻抗测试结果表明,溶液电阻RL为0.5Ω,电极电阻RE为0.6Ω;在电位为0~0.4V,10mA.cm-2恒流充放电条件下,测得其放电比容量可达352.7F.g-1。经12mA.cm-2恒电流循环100次,其放电效率仍达97.5%。  相似文献   

16.
17.
主要对碳纳米管制备及活化处理改善电化学性能进行研究。以二茂铁为催化剂前驱体,环己烷为碳源,采用CVD方法制备碳纳米管。采用KOH活化的方法对碳纳米管进行活化处理,有效地的改善了其电化学容量性能。考察了在制备活性碳纳米管时的三个主要影响因素:KOH/CNTs配比、活化温度和活化时间对活性碳纳米管的电化学容量的影响。通过对比研究,KOH/CNTs比例为3∶1所制得的活性碳纳米管作为电极材料时的电化学容量较理想;当活化温度为875℃时,所制得的活性碳纳米管作为电极材料时的电化学容量出现峰值;当活化时间为1.5h,活性碳纳米管的电化学容量达到最大值。同时对未活化及活化后的碳纳米管的形态和结构进行SEM和TEM表征,并对活化机理进行初步讨论。  相似文献   

18.
以CoCl2溶液和NaOH溶液为原料,通过两者混合反应得到Co(OH)2沉淀,再将沉淀灼烧制得直径约为100nm的Co3O4纳米颗粒。用X射线衍射、透射电子显微镜等对所制备的样品进行表征。结果表明:用所得纳米片状C030。制成电极,经过充放电测试可以发现电流密度为0.2mA·cm^-2时,电容量约100mA·h/g。  相似文献   

19.
硼碳氮(BCN)多孔材料因其具有高的比表面积、优异的化学稳定性而被认为是一种优异的吸附材料。本文以废弃椰壳、硼酸(H3BO3)和尿素(CO(NH2)2)为原料,采用冷冻干燥法制备多孔生胚,并在NH3气氛下通过高温固相反应法在不同的反应温度下合成BCN多孔材料。结果表明,随着反应温度的升高,BCN多孔材料孔径逐渐变大,当反应温度为950 ℃时平均孔径为2.1 nm。将BCN多孔材料用于吸附水中孔雀石绿(MG)有机染料,其最大吸附量可达1 239.8 mg·g-1,5次循环再生后吸附量平均值仍高达1 138.6 mg·g-1,说明BCN多孔材料具有优异的循环吸附性能。采用Langmuir和Freundlich等温吸附模型、准一级和准二级吸附动力学模型研究了浓度、吸附时间和平衡吸附量之间的关系。结果表明,BCN多孔材料的吸附与准二级吸附动力学模型吻合,其对MG的吸附属于均匀表面单层分子的Langmuir等温吸附。BCN多孔材料展现出优异的吸附能力,是一种非常有应用前景的新型吸附剂。  相似文献   

20.
随着经济社会的飞速发展,带来了能源危机,因此开发高效的清洁能源成为缓解危机的重要解决途径.超级电容器是一类新型储能器件,它具有良好的充放电效率、循环寿命长、稳定性能好、对环境无污染等优点,因此开发高效、可持续发展的电极材料是提升其电化学性能的主要途径.以三聚氰胺为原料,二茂铁为复合材料,用KOH在氮气气氛下经高温活化制备样品,对样品进行电化学测试研究其电容性能.测试结果表明:样品具有良好的电容性能,且由于氮原子的引入,增加了材料的导电性,减小了电阻,说明所制备的样品具有良好的电容性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号