首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conclusions The authors have designed an ultrasonic experimental apparatus and developed a procedure for using it to investigate the elastic properties of refractory concretes at 20–1500°C.They have determined the elastic moduli and investigated their pattern of change during heating and cooling of silica concretes based on water glass and aluminophosphate binder. They have established that the dynamic elastic moduli of these concretes vary within a wide range. During heating, the elastic modulus of the concretes sharply decreases within the range 50–500°C, then increases up to 1000°C, decreasing again on further rise in temperature.During cooling, the Ed exhibits the reverse pattern of change, but its values at the corresponding temperature are higher than during heating.The results obtained can be used to perfect the procedure for manufacturing refractory concretes and to determine their optimal conditions of service.Translated from Ogneupory, No. 4, pp. 38–43, April, 1979.  相似文献   

2.
The effect of processing conditions on rheological behavior of three blends of 30, 40, and 50% of high-melting fraction [melting point measured as Mettler dropping point (MDP)=47.5°C] in low-melting fraction (MDP=16.5°C) of milk fat was studied. The effects of cooling and agitation rates, crystallization temperature, chemical composition of the blends, and time of storage on complex, storage and loss moduli were investigated by dynamic mechanical analysis (DMA). Compression tests were performed on samples using frequency values within the linear viscoelastic range (1 to 10 Hz). Loss modulus was, on average, 10 times lower than elastic modulus and was generally not affected by processing conditions. Samples showed a more solid-like behavior that was better described by storage modulus. Storage modulus varied with all processing conditions used in this study, and even for the same solid fat content, different rheological properties were found. Storage and complex modulus increased with temperature of crystallization (25 to 30°C), even though solid fat contents of samples measured after 24 h at 10°C were the same. Moduli were higher for samples crystallized at slow cooling rate, decreased with agitation rate, and were lower for the 30–70% blend at all processing conditions used. Storage moduli also increased with storage time. Shear storage modulus was calculated from the DMA experimental data, and the results were in agreement with the values reported in literature for butter systems. Fractal dimensions calculated for these systems showed a significant decrease as agitation rate increased in agreement with the softening effect reported for working of butter.  相似文献   

3.
The effects of time and temperature on dynamic viscoelastic properties of Chinese fir (Cunninghamia lanceolata [Lamb.] Hook) were investigated using dynamic mechanical analysis in this study. The isothermal tests were applied to the small clear specimens with a moisture content of about 0.6% at constant temperatures ranging from 25 to 200°C for 550 min at atmospheric pressure. Changes in storage modulus and loss tangent with heating time were examined. The results indicated that heating time mainly resulted in thermal softening, thermal degradation of wood, and the reduction of wood stiffness. At more than 60°C, the reduction in storage modulus was accelerated generally as the wood was subjected to a higher temperature or longer heating time. At constant temperatures of 140 and 160°C, a relaxation phenomenon was observed with a slight change in weight, which could be attributed to the relocation of lignin molecules. At the temperature range of 140 to 180°C, the higher the heating temperatures, the earlier the tanδ peak appeared. It is suggested that the wood thermal softening occurs at higher temperatures with shorter heating times or at lower temperatures with longer heating times. At temperatures of 180 and 200°C, the loss of amorphous polysaccharides due to thermal degradation is considered to be the main factor affecting wood viscoelasticity.  相似文献   

4.
The rheology of polyamic acid (PAA) solutions, precursors of polyimides used in microelectronic device applications, has been investigated by dynamic (oscillatory) shear flow measurements. Frequency dependent storage and loss moduli and dynamic viscosity were measured in the frequency range 10?1 to 103 rad/s at 23°C. The storage modulus G′ (ω) and loss modulus G″ (ω) exhibited quadratic and linear dependence in frequency at low frequencies respectively, the viscoelastic fluid behavior commonly predicted for polymer solutions from many molecular theories. At high frequencies both dynamic moduli become proportional to ω2/3. The results show that PAA solutions are very high loss viscoelastic fluids, judging from the loss tangent values which far exceed unity. It is suggested that dynamic viscoelastic properties could be used to monitor the degree of imidization since there is a gradual change from viscoelastic fluids to soft viscoelastic solids to hard viscoelastic solids as PAA is converted to polyimides. Onset of non-Newtonian flow as shown on the frequency dependent dynamic viscosity was in the range 30 to 200 rad/s. The viscoelastic constants, zero-shear rate viscosity ηo and steady-state compliance Je0, where also determined from the dynamic data and compared to previous steady shear flow results.  相似文献   

5.
The dynamic properties of a structural tape used for adhesive bonding applications have been measured at different temperatures to determine its glass transition temperature and damping properties. For this purpose, free layer beams consisting of a base layer steel and the tape layer were vibrated using a resonant beam technique with free-free end conditions. To measure the dynamic values (elastic modulus and loss factor) of the tape, the necessary equations were derived and the frequency dependence of the beams was investigated from –55°C to +60°C. Three beams with different layers were tested. Results have shown that as the temperature increases, the elastic modulus of the tape decreases, while the loss factor of the tape increases up to 20°C and then decreases to a constant level. The results from the three beams are in agreement, showing that the glass transition temperature of the tape is about 20°C, which implies viscoelastic properties at room temperature.  相似文献   

6.
The present study deals with the effects of natural fibers on thermal and mechanical properties of natural fiber polypropylene composites using dynamic mechanical analysis. Composites of polypropylene and various natural fibers including kenaf fibers, wood flour, rice hulls, and newsprint fibers were prepared at 25 and 50% (by weight) fiber content levels. One and two percent maleic anhydride grafted polypropylene was also used as the compatibilizer for composites containing 25 and 50% fibers, respectively. Specimens for dynamic mechanical analysis tests were cut out of injection‐molded samples and were tested over a temperature range of ?60 to +120°C. Frequency of the oscillations was fixed at 1 Hz and the strain amplitude was 0.1%, which was well within the linear viscoelastic region. The heating rate was 2°C/min for all temperature scan tests. Storage modulus (E′), loss modulus (E″), and mechanical loss factor (tan δ) were collected during the test and were plotted versus temperature. An increase in storage and loss moduli and a decrease in the mechanical loss factor were observed for all composites indicating more elastic behavior of the composites as compared with the pure PP. Changes in phase transition temperatures were monitored and possible causes were discussed. Results indicated that glass transition was slightly shifted to lower temperatures in composites. α transition temperature was higher in the case of composites and its intensity was higher as well. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4341–4349, 2006  相似文献   

7.
The determination of elastic properties at application temperature is fundamental for the design of fibre reinforced ceramic composite components. An attractive method to characterize the flexural modulus at room and high temperature under specific atmosphere is the nondestructive Resonant Frequency Damping Analysis (RFDA). The objective of this paper was to evaluate and validate the modulus measurement via RFDA for orthotropic C/C-SiC composites at the application temperature. At room temperature flexural moduli of C/C-SiC with 0/90° reinforcement were measured under quasi-static 4-point bending loads and compared with dynamic moduli measured via RFDA longitudinally to fibre direction. The dynamic modulus of C/C-SiC was then measured via RFDA up to 1250°C under flowing inert gas and showed an increase with temperature which fitted with literature values. The measured fundamental frequencies were finally compared to those resulting from numerical modal analyses. Dynamic and quasi-static flexural moduli are comparable and the numerical analyses proved that bending modes are correctly modeled by means of dynamic modulus measured via RFDA. The nondestructive RFDA as well as the numerical modeling approach are suitable for evaluation of C/C-SiC and may be transferred to other fibre reinforced ceramic composite materials.  相似文献   

8.
The rheological properties of a polyamide 6/clay nanocomposite with a low loading of clay (1 wt %) were studied. Linear viscoelastic measurements in oscillatory and steady shear with small strain amplitudes were carried out. The nanocomposite exhibited a higher elastic modulus, viscous modulus, and complex viscosity than neat polyamide 6 during dynamic and steady shear tests. Moreover, the addition of clay resulted in a reduction of the critical strain amplitude, an increase of the loss angle, and a reduction of the frequency at the intersection of the elastic and viscous moduli. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

9.
Through a uniaxial hot compression method, polycarbonate (PC) plates were self-reinforced effectively by press-induced deformation. Relationships between macroscopic mechanical properties including tensile, impact as well as viscoelastic properties, and microscopic status such as morphologies and orientation were obtained in deformed PC plates. Results showed that PC plates which were compressed at appropriate temperatures (20°C–120 °C) obtained simultaneous enhancements in tensile strength (28%), elastic modulus (38%) and impact strength (700%), compared with the original plate. The impact fracture morphologies of deformed PC plates revealed evident ductile breakage. Wide-angle X-ray diffraction investigations were conducted to attribute mechanical behavior to molecular segment orientation, which was more sensitive to temperature. Self-reinforced mechanism was proposed to analyze the high correlation between various orientations of molecular segments and corresponding mechanical performance, explained by storage and loss moduli in dynamic mechanical analysis as supplemental verification. Press-induced deformation was proved to be a potentially effective method for the self-reinforcement treatment for PC transparent products.  相似文献   

10.
In this study, the effect of activator ZnO and heating time at 190°C on foaming, gelation, and dehydrochlorination of poly(vinyl chloride) (PVC) plastisol was investigated. For this purpose, a PVC plastisol was prepared by mixing PVC, dioctyl phthalate (DOP), azodicarbonamide (ADC), ZnO, and the heat stabilizers calcium stearate (CaSt2) and zinc stearate(ZnSt2). PVC plastisol films were heated for 3, 6, 12, and 24 min periods at 190°C to see the effect of heating time on the gelation and foaming processes of the PVC foam. The time of 12 min was determined to be optimum for the completion of gelation and foaming processes without thermal degradation of PVC. No foaming was observed under the same conditions for the samples without ZnO. ZnO had a significant catalytic effect on ADC decomposition, accelerating the foaming of the films. Average porosity measurement showed a consistent increase in porosity with heating time up to 76% and the average density decreased from 1.17 to 0.29 g/cm3 on foaming. Tensile tests showed that the tensile strength and tensile strain both increased considerably up to 0.98 MPa and 207%, respectively, with heating time and the elastic modulus was seen to gradually decrease from 4.7 to 0.7 MPa with heating time. Films without ZnO had higher tensile strength since there were no pores. PVC thermomat tests showed that ZnO lowered the stability time of plastigel film with azodicarbonamide. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
增塑剂对旋转模塑用PVC增塑糊性能的影响   总被引:4,自引:0,他引:4  
通过增塑剂种类及用量对旋转模塑用聚氯乙烯(PVC)增塑糊粘度及其粘度稳定性、脱气性能、凝胶化性能的影响及温度对凝胶化性能的影响进行了研究。结果表明:选择自身粘度较小且溶剂化能力较弱的增塑剂及随增塑剂用量增加,PVC增塑糊粘度下降、粘度稳定性逐渐变好,有利于PVC增塑糊的排气性能提高,延长PVC增塑糊的凝胶化时间。通过调节加热温度及时间可在一定范围内有效控制凝胶化过程,以期获得制品所需性能。  相似文献   

12.
This work was aimed at understanding how the injection‐molding temperature affected the final mechanical properties of in situ composite materials based on polycarbonate (PC) reinforced with a liquid‐crystalline polymer (LCP). To that end, the LCP was a copolyester, called Vectra A950 (VA), made of 73 mol % 4‐hydroxybenzoic acid and 27 mol % 6‐hydroxy‐2 naphthoic acid. The injection‐molded PC/VA composites were produced with loadings of 5, 10, and 20 wt % VA at three different processing barrel temperatures (280, 290, and 300°C). When the composite was processed at barrel temperatures of 280 and 290°C, VA provided reinforcement to PC. The resulting injection‐molded structure had a distinct skin–core morphology with unoriented VA in the core. At these barrel temperatures, the viscosity of VA was lower than that of PC. However, when they were processed at 300°C, the VA domains were dispersed mainly in spherical droplets in the PC/VA composites and thus were unable to reinforce the material. The rheological measurements showed that now the viscosity of VA was higher than that of PC at 300°C. This structure development during the injection molding of these composites was manifested in the mechanical properties. The tensile modulus and tensile strength of the PC/VA composites were dependent on the processing temperature and on the VA concentrations. The modulus was maximum in the PC/VA blend with 20 wt % VA processed at 290°C. The Izod impact strength of the composites tended to markedly decrease with increasing VA content. The magnitude of the loss modulus decreased with increasing VA content at a given processing temperature. This was attributed to the anisotropic reinforcement of VA. Similarly, as the VA content increased, the modulus and thus the reinforcing effect were improved comparatively with the processing temperature increasing from 280 to 290°C; this, however, dropped in the case of composites processed at 300°C, at which the modulus anisotropy was reduced. Dynamic oscillatory shear measurements revealed that the viscoelastic properties, that is, the shear storage modulus and shear loss modulus, improved with decreasing processing temperatures and increasing VA contents in the composites. Also, the viscoelastic melt behavior (shear storage modulus and shear loss modulus) indicated that the addition of VA changed the distribution of the longer relaxation times of PC in the PC/VA composites. Thus, the injection‐molding processing temperature played a vital role in optimizing the morphology‐dependent mechanical properties of the polymer/LCP composites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

13.
Novel injectable thermoreversible hydrogel compositions with semi-interpenetrating network structure were prepared through the addition of sodium alginate (SA) to poly(N-isopropylacrylamide) (PNIPAM) aqueous solutions. The addition of the hydrophilic alginate strongly improved the stability against syneresis of the 15 wt% PNIPAM hydrogels formed at 37°C from less than 15 min in the absence of alginate to more than 7 days in the presence of 4 wt% SA. Besides the SA concentration, the hydrogel stability depended on the molecular weight and polydispersity of PNIPAM, being lower when a high molecular weight fraction was present. The phase transition temperature (Tph) of the PNIPAM aqueous solutions decreased with alginate concentration, while the dynamic viscosity and elastic modulus of the hydrogels increased. By decreasing the PNIPAM molecular weight and polydispersity, the dynamic viscosity and elastic modulus of the PNIPAM–alginate hydrogels formed above Tph diminished, while their viscoelastic behavior changed from predominantly elastic to predominantly viscous.  相似文献   

14.
The rheological properties of high concentrated wood pulp cellulose 1‐allyl‐3‐methy‐limidazolium Chloride ([Amim]Cl) solutions were investigated by using steady shear and dynamic viscoelastic measurement in a large range of concentrations (10–25 wt %). The measurement reveals that cellulose may slightly degrade at 110°C in [Amim]Cl and the Cox–Merz rule is valid for 10 wt % cellulose solution. All of the cellulose solutions showed a shear thinning behavior over the shear rate at temperature from 80 to 120°C. The zero shear viscosity (ηo) was obtained by using the simplified Cross model to fit experimental data. The ηo values were used for detailed viscosity‐concentration and activation energy analysis. The exponent in the viscosity‐concentration power law was found to be 3.63 at 80°C, which is comparable with cellulose dissolved in other solvents, and to be 5.14 at 120°C. The activation energy of the cellulose solution dropped from 70.41 to 30.54 kJ/mol with an increase of concentration from 10 to 25 wt %. The effects of temperature and concentration on the storage modulus (G′), the loss modulus (G″) and the first normal stress difference (N1) were also analyzed in this study. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
Dynamic viscosity and elastic modulus for a low molecular weight styrene-butadiene-styrene (SBS) block copolymer ate measured as a function of temperature (80-170°C) and frequency using the eccentric rotating disc geometry. These linear properties are superimposed to yield master curves each of which exhibits two branches below different (critical) reduced frequencies. At lower temperatures, the non-Newtonian behavior characteristic of SBS block copolymers is observed. In contrast, Newtonian response occurs at higher temperatures. As a consequence, plots of the viscoelastic properties vs temperature exhibit discontinuities below the critical frequencies, reflecting a narrow transition at about 142°C. Above this temperature, it is inferred, consistent with the equality of dynamic and steady state viscosities, that the polystyrene (S) blocks, existent in dispersed domains at low temperatures, exceed a critical degree of compatibility with the continuous polybutadiene phase. The activation energies indicate that the S blocks affect the temperature dependence of the dynamic properties in proportion to their presence in an interphase which is assumed to continuously grow in size as temperature is raised to the transition temperature. Below the critical reduced frequencies, it is inferred that S domain disruption may increasingly occur in conjunction with the observed property enhancement due to these domains, relative to the miscible blocks, as reduced frequency is lowered. However, above these frequencies, the presence of frequency-temperature superposition implies that the S domains and the miscible blocks are equivalent in their effects on properties. At still higher reduced frequencies, the domains present at the low temperatures studied are assumed to remain intact, but plateau behavior similar to the response characteristic of homopolymers is observed.  相似文献   

16.
Melt rheology and its time-temperature dependence have long been known to be fundamental properties associated with satisfactory expansion characteristics in vinyl foam. Since much is known about the relationship between rheology and material variables like polymer morphology and system composition, adequate rheological characterization should be quite helpful in polymer design and plastisol compounding. Earlier attempts to study the melt rheology of plasticized PVC foam systems were only partially successful because instrument limitations required that the material be studied at too high shear rate or temperature, or that behavior of specific compositions be extrapolated from data obtained at considerably higher plasticizer level. This paper deals with measurement of the viscoelastic behavior of melts from actual azodicarbonamide foam compositions. The Rheometrics Mechanical Spectrometer was used in the orthogonal mode to study both elastic modulus and loss modulus (viscosity) in the range of shear rates and temperatures which actually occur during commercial utilization of PVC foam compounds. The effects of changing vinyl resin types and plasticizer types and levels were explored.  相似文献   

17.
A study on the dynamic viscoelastic properties of carbon black (CB)‐filled high‐density polyethylene (HDPE) in the molten state was carried out. When the temperature was above 180°C in an air atmosphere, the storage modulus G′, loss modulus G″, and loss tangent δ showed particular characteristics. In the low‐frequency region, the modulus increased with increase of the testing time while the tan δ obviously decreased. Also, the higher the temperature, the more notable was the change. We can detect these changes from the deviation of G′ (G″) against ω plots from the linearity and the appearance of a characteristic plateau phenomenon. The width and height of the modulus plateau increased with increase of the temperature. When temperature was below 180°C, the testing time and the temperature had no effect on the viscoelastic parameters of HDPE. However, if we used 99% nitrogen gas as the atmosphere, substituting for air, the viscoelastic parameters revealed an undiscernible change, different from that in an air atmosphere. No changes were found under the protection of the antioxidant B215. This phenomenon indicated that HDPE can be oxidized at a temperature higher than 180°C. Nitrogen gas and an antioxidant agent can prevent HDPE from crosslinking. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2160–2167, 2003  相似文献   

18.
A kind of temperature‐sensitive water‐soluble polymers P(NIPAM‐HEMA‐AM) of N‐isopropylacrylamide (NIPAM), hydroxyethyl methacrylate (HEMA) and acrylamide (AM) were synthesized by free radical aqueous solution copolymerization. The polymers were characterized by Fourier transform infrared spectrum (FTIR) method. Solution properties, such as the influences of monomer ratios and additives on the low critical soluble temperature (LCST) of the polymer solutions as well as the viscosity‐temperature properties were studied. The results show that the polymer concentrations have no significant influence on the LCST of polymer solutions. The incorporation of HEMA units leads to a lower LCST, while AM units to a higher LCST. The additions of small molecules such as salt and surfactant also have significant effect on the LCST, the addition of NaCl decreases the LCST, while the addition of sodium dodecylbenzenesulfonate (SDBS) increases the LCST. The apparent viscosity of polymer solutions depends on temperature. The 1.5 wt % aqueous solutions of P(NIPAM‐HEMA‐AM) exhibits good thermo‐thickening behavior over 55°C, whereas the 0.8 wt % aqueous solutions do not show this behavior during the heating process. The aqueous solutions of P(NIPAM‐HEMA‐AM) are viscoelastic fluids, and the viscoelasticities mainly depend on temperature. Both the storage modulus (G') and loss modulus (G'') of 1.5 wt % polymer solutions increase with temperature. Over 55°C, G' exceeds G'', and the polymer solutions are elasticity‐dominated. In contrast, below 55°C, G'' is larger than G', and the polymer solutions are viscosity‐dominated. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
Rheological properties of nylon‐1212 have been studied by means of Haake Rheometer. The effect of shear rate and temperature on the apparent vicosity of nylon‐1212 was discussed. A correlation of non‐Newtonian index with the temperature was obtained. The results showed that the apparent viscosity decreases with the increase of the temperature. With increasing shear rate, shear thinning of nylon‐1212 was observed clearly. From the relation of the temperature dependence of the polymer, we obtained the viscous flow activation energy. We conclude that the apparent viscosity is sensitive to temperature at lower shear stress because of higher viscous flow activation energy, and the temperature affect on the apparent viscosity becomes weaker at higher shear stress because of lower viscous flow activation energy. We have investigated the creep and elastic recovery of nylon‐1212. A creep test was carried out to define the linear viscoelastic range as 1.0 and 5.0 Pa for 195 and 190°C nylon‐1212 melts, respectively. A time‐dependent response was found for the creep and recovery phases at a lower applied shear stress. However, at higher shear stress, the creep and recovery phases were time‐independent. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 379–385, 2003  相似文献   

20.
Anhydrous gelatin–glycerol compositions exhibit rubbery behavior in the temperature region ?40 to +40°C. and in the gelatin weight fraction range 0.1–0.4. These rubbers are capable of sustaining considerable stress over several decades of time at room temperature or below but flow rapidly in the region 45–60°C. Stress relaxation moduli at 25°C. appear to be insensitive to the substitution of glycerol with water but shear viscosity data indicate that gelatin–glycerol rubbers flow at temperatures about 15°C. higher than their aqueous counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号