首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
以沸石咪唑骨架-67(ZIF-67)为前驱体,采用两步煅烧法制备了四氧化三钴/碳(Co_3O_4/C)纳米复合材料。利用自由基聚合法合成了Co_3O_4/C-聚丙烯酰胺水凝胶,进一步在水凝胶框架中原位聚合电化学活性聚吡咯颗粒,制备具有优异机械性能的柔性复合电极材料。在此基础上,将该柔性电极材料和水凝胶电解质组装成全固态柔性超级电容器;实验结果表明,Co_3O_4/C纳米材料与导电聚合物复合电极材料具有优异的超级电容器性能。通过恒流充放电曲线计算得到该器件具有197.83 m F/cm~2的面电容。在电化学循环10 000圈后该器件的容量仅下降9%,展示了其优异的循环稳定性;此外,该电容器具有的优异机械柔性,使其有望应用于未来柔性电子器件。  相似文献   

2.
非对称超级电容器(ASCs)因电化学性能更为优异而成为近几年来的研究热点,石墨烯作为一种新颖的二维碳材料,具有比表面积大、导电性高、力学性能好和化学稳定性优异等优点,是非对称超级电容器复合电极的一类理想载体材料。本文综述了近几年来石墨烯基复合电极在非对称超级电容器中的应用状况,认为比表面积更大、导电性更好的石墨烯将会促进石墨烯基复合电极在超级电容器中的应用与发展,也会提高石墨烯基非对称超级电容器的性能。指出将金属氧化物、导电聚合物、金属氢氧化物以及金属硫化物纳米化,使之兼具大的有效面积、丰富的氧化还原活性位点等特点,从而提高复合材料的比电容,是石墨烯基复合电极的研究重点。  相似文献   

3.
本文综述了超级电容器MnO_2基复合电极材料的研究进展,结果表明纳米结构的碳材料或导电聚合物与MnO_2复合能提升电极材料的比电容,但在循环性能上还有待提高。纳米结构碳材料、导电聚合物与MnO_2合成形成多元复合电极体现出较大的优势。构建微观结构与宏观性能之间的内在关联机制对于进一步提升MnO_2基电极材料的性能意义重大。  相似文献   

4.
目前导电聚合物超级电容器电极材料主要以各种单纯的聚合物为主,然而单纯的聚合物容量低,循环稳定性差,这些因素严重制约了其在商业中的广泛应用,因此研究制备成本低、容量高、具有高稳定性的聚合物/碳材料复合材料是研究的重点。本文简单概述了导电聚合物超级电容器电极材料的研究进展。  相似文献   

5.
超级电容器作为一种新型的储能器件,具有广泛的应用前景。石墨烯基材料表现出优异的电化学性能,在超级电容器电极材料方面具有潜在的应用价值。文章简单对石墨烯/碳,石墨烯/金属氧化物,石墨烯/导电聚合物等三类石墨烯基超级电容器电极材料进行简单论述。  相似文献   

6.
郭勇  刘聪聪 《江西化工》2023,(2):1-5+18
随着柔性可穿戴电子设备的发展,与之相匹配的柔性/可拉伸储能器件的市场需求越来越大。柔性/可拉伸超级电容器(FSC)因具有机械性能良好、功率密度高、循环稳定性好和电化学性能稳定等优点而受到广泛关注。作为FSC的核心部件,不同结构的电极将直接影响FSC的整体性能。文章重点概括了石墨烯基电极结构的设计和电极制备对超级电容器的柔性/拉伸性能以及电化学性能的影响。  相似文献   

7.
静电纺丝法制备聚丙烯腈(PAN)基纳米纤维具有较大的比表面积、较高的机械强度、优异的纳米结构及良好的化学稳定性。以PAN纳米纤维为基础,进行多方位设计与合成的电极材料在超级电容器中表现出优异的电化学性能,具有广阔的应用前景。本文根据电极材料分类,主要综述了近年来PAN基多孔结构电极材料、杂原子掺杂电极材料以及与碳系材料、导电聚合物、金属氧化物复合等电极材料的研究进展;讨论了电极材料的结构特征、制备方法及其提高电化学性能的原理;最后指出了上述研究中存在的问题,并对未来PAN基电极材料在超级电容器的发展前景进行了展望。  相似文献   

8.
从超级电容器的储能机理和柔性电子的研究出发,综述了基于碳纳米管(CNTs)及其复合材料的柔性和可拉伸超级电容器的研究现状。总结了近年来在开发柔性和可拉伸超级电容器领域中对CNTs直接电极材料,CNTs与过渡金属氧化物或导电聚合物复合电极材料,CNTs与石墨烯复合电极材料研究的进展。  相似文献   

9.
导电聚合物作为超级电容器的电极材料有成本低、容量高、充放电速度快和安全性高等特点。综述了以聚噻吩、聚吡咯、聚苯胺等本征型导电高分子材料为基体,填充碳系材料(石墨烯、碳纳米管和活性炭)、无机氧化物、金属氧化物等制备的导电聚合物复合材料,概括了导电聚合物复合材料在超级电容器电极材料应用中的优势,提出制备兼具高比电容和良好稳定性的复合材料是该领域重要的发展方向。  相似文献   

10.
《广州化工》2021,49(15)
超级电容器作为一种环保的新型储能装置,具有超高的功率密度,循环寿命长、工作温度区间大、经济环保等优势。MnO_2作为常见的过渡金属氧化物,具有超高的理论电容、化学稳定性强、成本低、经济环保等特点,经常用作非对称超级电容的电极极材料。将MnO_2与导电性能好的碳基材料组成,可以构建比容量大和循环稳定性强的复合材料。综述了近年来MnO_2-碳复合材料在超级电容器中的研究发展,总结了MnO_2-碳基超级电容器面临的挑战和未来发展趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号