共查询到17条相似文献,搜索用时 62 毫秒
1.
单蒸汽泡尾流特性是影响窄缝通道内蒸汽-水两相流流型形成与演变的关键因素,本文采用粒子图像测速仪PIV和Insight3G后处理软件,对窄缝通道内过冷条件下单蒸汽泡的尾流特性进行研究,获得窄缝通道内单蒸汽泡的尾流特性。实验结果表明,单蒸汽泡冷凝上升过程中,其尾流均为涡交替脱落的不对称尾流结构;汽泡直径越大,涡越细长,涡强度越大,大直径蒸汽泡的尾流对周围汽泡的作用更强;流道间隙减小,则尾流中涡强度降低,流体速度减小,尾流对周围汽泡的影响会相应减弱。单蒸汽泡尾流特性为构建窄缝通道内蒸汽-水两相流模型提供基础支持。 相似文献
2.
3.
以去离子水为工质,在进口压力为0.1~0.3 MPa、质量流速为200~1400 kg·m-2·s-1、热流密度为20~320k W·m-2的参数范围内,对截面参数为50mm×2mm的竖直矩形窄缝通道展开了传热实验研究。实验获得通道内部工质由单相状态到过冷沸腾状态的传热过程曲线,将过冷沸腾段实验值与8个经验公式提供的预测值进行了对比与分析,采用相似原理以及回归分析法,建立了适用于竖直矩形窄缝通道的过冷沸腾准则关系式。研究结果表明,在竖直矩形窄缝通道内,热流密度对过冷沸腾传热具有主导作用;对于本实验的窄缝通道,Bertsch传热公式对于过冷沸腾段的预测效果相较于其他公式更好,本研究所建立的准则关系式与实验数据符合良好。因此,本研究建立的公式能够用于竖直矩形窄缝通道过冷沸腾传热系数的预测。 相似文献
4.
5.
采用高速摄像仪对矩形窄缝通道内垂直上升流过冷流动沸腾区域汽泡脱离频率进行可视化实验研究。结果表明,汽泡脱离频率随质量流速的增大而减小,随入口过冷度的增大而减小,随热流密度的增大而增大。将实验数据与文献中汽泡脱离频率计算模型进行比较,发现基于池式沸腾和饱和流动沸腾开发的计算模型不能准确预测过冷沸腾区域汽泡脱离频率。本文以无量纲参数的形式,分别用液相雷诺数、过冷雅各布数和核态沸腾热流密度表示质量流速、主流过冷度和热流密度对汽泡脱离频率的影响,获得矩形窄缝通道内过冷沸腾区域汽泡脱离频率预测关系式,关系式的平均预测误差为±17.1%。 相似文献
6.
7.
8.
板状燃料元件中的矩形窄缝通道具有宽高比大的几何特征,高度方向速度梯度大、分布陡峭,发生过冷沸腾时,近壁面汽泡运动行为将受其影响而改变,其中汽泡滑移现象对沸腾换热影响较大。本文针对矩形窄缝通道中的汽泡滑移行为,构建了包含滑移热流的壁面热流分配模型,并建立机理性的汽泡受力模型和滑移模型计算汽泡脱离直径、浮升直径和滑移距离等辅助参数,开发了一套适用于矩形窄缝通道内向上流动沸腾的壁面沸腾模型。选用Nuthel窄缝通道沸腾实验进行数值模拟验证,结果表明:本文模型可以较好地预测1~4 MPa中低压工况窄缝通道向上流动沸腾的壁面过热度,最大误差相比RPI模型由80%降低至17%;蒸发热流份额和近壁面空泡份额相比RPI模型更低。 相似文献
9.
板状燃料元件中的矩形窄缝通道具有宽高比大的几何特征,高度方向速度梯度大、分布陡峭,发生过冷沸腾时,近壁面汽泡运动行为将受其影响而改变,其中汽泡滑移现象对沸腾换热影响较大。本文针对矩形窄缝通道中的汽泡滑移行为,构建了包含滑移热流的壁面热流分配模型,并建立机理性的汽泡受力模型和滑移模型计算汽泡脱离直径、浮升直径和滑移距离等辅助参数,开发了一套适用于矩形窄缝通道内向上流动沸腾的壁面沸腾模型。选用Nuthel窄缝通道沸腾实验进行数值模拟验证,结果表明:本文模型可以较好地预测1~4 MPa中低压工况窄缝通道向上流动沸腾的壁面过热度,最大误差相比RPI模型由80%降低至17%;蒸发热流份额和近壁面空泡份额相比RPI模型更低。 相似文献
10.
11.
12.
13.
14.
为研究过冷度对蒸汽气泡破碎及微气泡喷射过程的影响,利用高速摄像机记录不同过冷度下过冷池中蒸汽气泡凝结过程。实验结果表明:在低过冷度(ΔTsub=17K)下,蒸汽气泡界面波动发展缓慢,气泡不会破碎,而是逐渐分裂凝结;在高过冷度(40KΔTsub75K)下,蒸汽气泡表面上的波动剧烈发展,随后气泡会突然破碎,并形成大量微气泡;在ΔTsub=30K时,气泡突然破碎前会有小气泡分裂现象发生。40KΔTsub75K时气泡破碎形成的微气泡的直径和速度在量级上与气泡微细化沸腾区域的微气泡接近。随过冷度的升高,微气泡的直径减小,速度增加,且蒸汽气泡破碎前其表面上波动的波数迅速增加,波动的最大幅值先增加后减少。 相似文献
15.
16.
为了探究过冷度和表面粗糙度对铁铬铝(FeCrAl )平板淬冷沸腾的影响,对FeCrAl 平板在不同过冷度和表面粗糙度下的淬冷沸腾过程开展了可视化实验研究。采用热电偶测量平板内部温度,并利用导热反问题解析式求解平板表面温度和热流密度;通过对比分析实验现象,探究过冷度和表面粗糙度对平板淬冷沸腾过程的影响,并建立了过冷度与最小膜态沸腾温度的关系式。结果表明,淬冷沸腾过程中,FeCrAl 平板表面形成开尔文一亥姆霍兹(K-H)不稳定波,且气膜破裂后产生的骤冷前沿呈“抛物线”状;随着过冷度的增加,最小膜态沸腾温度增大,临界热流密度增大,平板表面冷却速率加快,淬冷沸腾过程的时长缩短;较大的表面粗糙度可以促进FeCrAl 平板表面淬冷沸腾的进行,但影响微小。 相似文献