首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article examines the self-healing repair of delamination damage in mendable carbon fibre–epoxy laminates under static or fatigue interlaminar loading. The healing of delamination cracks in laminates containing particles or fibres of the mendable thermoplastic poly[ethylene-co-(methacrylic acid)] (EMAA) was investigated. The results showed that the formation of large-scale bridging zone of EMAA ligaments along the crack upon healing yielded a large increase (~300%) in the static mode I interlaminar fracture toughness, exceeding the requirement of full restoration. The mendable laminates retained high healing efficiency with multiple repair cycles because of the capability of EMAA to reform the bridging zone under static delamination crack growth conditions. Under fatigue loading, healing by the EMAA was found to restore the mode I fatigue crack growth resistance, with the rates of growth being slightly less than that pertinent to the unmodified laminate. The EMAA bridging zone, which generated high toughness under static loading conditions, does not develop under fatigue loading because of rapid fatigue failure of the crack bridging ligaments. Similar to the multiple healing capability of EMAA under static loading, multiple healing of delamination fatigue cracks is confirmed, with the fatigue crack growth rates remaining approximately unchanged. This study shows that EMAA was capable of full recovery of fatigue crack growth resistance and superior healing efficiency for static loading.  相似文献   

2.
This paper presents an experimental assessment of the initiation and propagation of interlaminar cracks under mixed mode I/II dynamic fracture loading of a composite material with an MTM45‐1 epoxy matrix and unidirectional IM7 carbon‐fiber reinforcement. The aims of the experimental program developed for this purpose are to determine, on the one hand, the initiation curves of the fatigue delamination process, understood as the number of load cycles needed to generate a fatigue crack, and on the other, the crack growth rate (delamination rate) for different percentages of static Gc, in both cases for two mode mixities (0.2 and 0.4) and for a tensile ratio R = 0.1. All this with the goal of quantifying the influence of the degree of mode mixity on the overall behavior of the laminate under fatigue loading. The results show that the energy release rate increases with increasing loading levels for both degrees of mode mixity and that the fatigue limit is located around the same percentages. However, crack growth rate behavior differs from one degree of mode mixity to the other. This difference in the behavior of the material may be due to the varying influence of mode I loading on the delamination process.
  相似文献   

3.
A novel approach is proposed describing both the onset and growth of delaminations in fibre-reinforced laminates under pure mode II constant amplitude loading with the same damage evolution rule, unifying these two aspects of the material behaviour that are normally treated separately. A scalar damage variable is introduced to represent the fraction of overall fatigue endurance used up at ply interfaces as a function of the number of accumulated cycles. The damage rate equation is postulated in a generic power law format, which also includes the effect of the load stress-ratio. The material SN curves for pure mode II loading are obtained in closed form by a simple integration of the assumed damage evolution law. The material delamination propagation rate as a function of the energy release rate and the stress-ratio is similarly obtained combining the aforementioned damage evolution law with a regularized expression for the stress field at the crack tip. Two independent fatigue related parameters are sufficient for describing both the delamination onset and its growth. This modelling approach is validated by means of experimental fatigue delamination data for IM7/8552 carbon fibre/epoxy, demonstrating that the unified modelling strategy is able to describe both fatigue initiation and propagation and the associated effect of the stress-ratio.  相似文献   

4.
This paper experimentally analyzes the influence of temperature and type of matrix on the delamination process of two composites subjected to fatigue loading through the study of their fracture under mode I behavior. The materials were manufactured with the same AS4 unidirectional carbon reinforcement and two epoxy matrices with different fracture behavior. The chosen temperatures for the experiments were 20 (room temperature), 50 and 90 °C.The experimental study carried out under dynamic loading enabled the authors to determine the influence that temperature has on the onset of delamination for the entire range of fatigue life of the material, from the low number of cycles zone to the high number of cycles zone. That is, it enabled the plotting of fatigue curves, represented as GImaxN (number of cycles required for the onset of delamination given a certain energy release rate) for an asymmetry coefficient of 0.2 (the ratio between the maximum and minimum fracture energies applied during the dynamic tests).The experimental data obtained were treated with a probabilistic model based on a Weibull distribution which allowed the identification of relevant aspects of the fatigue behavior of the materials such as the estimation of fatigue strength for periods greater than the tested values and the analysis of the reliability of the results.  相似文献   

5.
This paper presents a study of fatigue performance of composite T-joints used in wind-turbine blades. A T-joint with various fibre reinforcement architectures were selected to investigate its fatigue behaviour. The 3D angle interlock T-joint was found to have the best performance in both static and fatigue loading. Increasing the static properties increases fatigue performance while the increasing rate in life performance is changed with the number of fatigue cycles. A finite element (FE) model was developed that can determine the stress distribution and the initiation and propagation of a delamination crack. The location for through-thickness reinforcement is very important to improve fatigue performance of composite T-joints. Fatigue performance is significantly improved for the web with through-thickness reinforcement while fatigue performance is decreased if the through-thickness reinforcement is applied to the flange-skin regions. The interlaminar veil significantly increases the ultimate strength under static load but fatigue performance at high stress cycles is increased but not significantly.  相似文献   

6.
《Composites Part A》2005,36(5):603-614
The effect of stitching on the fracture response of single-lap composite joints was studied by a combined experimental and numerical analysis. Unstitched and Kevlar stitched joints were tested under static and fatigue loading to characterize damage progression and failure modes; a three-dimensional finite element analysis was carried out to evaluate the influence of stitches on strain energy release rates as a function of damage and to identify the role of various stitching parameters on the fracture behaviour of joints.It was observed that the failure of the joints occurs as a consequence of the propagation of delamination at the interface between the adherends; the propagation is stable under fatigue loads and unstable under static loads. Stitching does not improve the static strength of joints but significantly prolongs the duration of the crack propagation phase under fatigue loading.The results of finite element modelling indicate that the incorporation of stitches reduce GI to zero after the delamination front passes the stitch line, but it is not effective in reducing mode II energy release rate. They also show that strain energy release rates are not greatly affected by the length of stitch-laminate debonding, which, conversely, does influence stitch tensioning. Moreover, 3D analysis reveals that stitches become less efficient in reducing the crack driving force with increasing stitching steps.  相似文献   

7.
In ductile metals one of basic mechanisms for fatigue crack growth is that based on crack-tip blunting under the maximum load and re-sharpening of the crack-tip under minimum load. In this paper, simulations of fatigue crack growth by crack-tip blunting using ANSYS finite element code are presented. This investigation focuses solely on simulation of fatigue crack growth due to crack-tip plasticity only. As such, any material damage and its fracture is not considered. Due to high plastic deformation the present simulations utilize a remeshing technique which allows applying a number of load cycles without terminating the simulation due to the error caused by excessive mesh distortion. The simulations were conducted using a center cracked specimen under various loading conditions including different load ranges and load ratios R = −1, 0 and 0.333. It is shown that fatigue crack growth (FCG) slows down with number of cycles towards a steady state value. The simulated FCG data for constant amplitude loading follow the Paris power law relationship and also indicate a typical R-ratio dependence. It can be noted that for all load cases with load ratios R > 0 no crack closure in the vicinity of the crack-tip wake was observed.  相似文献   

8.
This paper presents a study of delamination growth in HTA/6376C carbon fibre/epoxy laminates. Tests were conducted under Mode I, Mode II and mixed-mode static and fatigue loading at both ambient conditions and elevated temperature. The results show that the strain energy release rate threshold values for delamination growth under fatigue loading are significantly lower than the critical energy release rates in static tests. At elevated temperature, the threshold values in the fatigue loading were only about 10% of the critical values in the static tests. A fractographic analysis of the delamination growth revealed that the fracture surfaces generated at elevated temperature generally were similar to the fracture surfaces generated at room temperature. Nevertheless, some differences in morphology of the fracture surfaces were observed, and their effect on the static and fatigue delamination growth is discussed in detail.  相似文献   

9.
This paper proposes a level set model for simulating delamination propagation in composites under high-cycle fatigue loading. For quasi-static loading conditions, interface elements with a cohesive law are widely used for the simulation of delamination. However, basic concepts from fatigue analysis such as the notion that the crack growth rate is a function of energy release rate cannot be embedded in existing cohesive laws. Therefore, we propose a model in which the cohesive zone is eliminated from the computation while maintaining the flexibility that the crack shape is not bound to element edges. The model is able to predict the delamination growth rate and its front shape accurately. To demonstrate the validity of the model, several tests under different fracture modes are conducted and the results are compared with experimental data, analytical solutions and results from cohesive zone analysis.  相似文献   

10.
Static and cyclic fatigue crack growth behaviour of gamma base titanium aluminides with three different microstructures were investigated. Influence of cyclic test frequency on fatigue crack growth behaviour was also studied at room temperature under a controlled humidity condition. The crack growth behaviour both under static and cyclic loading was strongly influenced by the microstructure. The threshold stress intensity and crack growth behaviour under cyclic loading were much inferior than that under static loading indicating the ‘true-cyclic fatigue’ effect exhibited in gamma base titanium aluminides. No significant effect of test frequency on the crack growth behaviour was observed for the equiaxed and duplex microstructure materials.  相似文献   

11.
The aim of this study was to investigate the applicability of acoustic emission (AE) technique to evaluate delamination crack in glass/epoxy composite laminates under quasi-static and fatigue loading. To this aim, double cantilever beam specimens were subjected to mode I quasi-static and fatigue loading conditions and the generated AE signals were recorded during the tests. By analyzing the mechanical and AE results, an analytical correlation between the AE energy with the released strain energy and the crack growth was established. It was found that there is a 3rd degree polynomial correlation between the crack growth and the cumulative AE energy. Using this correlation the delamination crack growth was predicted under both the static and fatigue loading conditions. The predicted crack growth values was were in a good agreement with the visually recorded data during the tests. The results indicated that the proposed AE-based method has good applicability to evaluate the delamination crack growth under quasi-static and fatigue loading conditions, especially when the crack is embedded within the structure and could not be seen visually.  相似文献   

12.
Critical strain energy release rate of glass/epoxy laminates using the virtual crack closure technique for mode I, mode II, mixed-mode I + II and mode III were determined. Mode I, mode II, mode III and mixed-mode I + II fracture toughness were obtained using the double cantilever beam test, the end notch flexure test, the edge crack torsion test and the mixed-mode bending test respectively. Results were analysed through the most widely used criteria to predict delamination propagation under mixed-mode loading: the Power Law and the Benzeggagh and Kenane criteria. Mixed-mode fracture toughness results seem to represent the data with reasonable accuracy.  相似文献   

13.
14.
The correlation between grain boundary microstructure and fatigue crack growth with hold-times was investigated for two conditions of the superalloy Allvac 718Plus; a Standard condition with the recommended distribution of grain boundary phases and a Clean condition with virtually no grain boundary phases. Fatigue testing was performed at 704 °C using 10 Hz cyclic load with intermittent hold-times of 100 s at maximum tensile load. Microstructural characterization and fractography were conducted using scanning- and transmission electron microscopy techniques. Auger electron- and X-ray photoelectron spectroscopy techniques were used for oxide analyses on fracture surfaces. It was found that in the Standard condition crack growth is mostly transgranular for 10 Hz loading and intergranular for hold-times, while for the Clean condition crack growth is intergranular in both load modes. The lower hold-time crack growth rates in the Standard condition are attributed to grain boundary δ-phase precipitates. No effect of δ-phase was observed for 10 Hz cyclic loading crack growth rates. Two different types of oxides and oxide colours were found on the fracture surfaces in the Standard condition and could be correlated to the different loading modes. For cyclic loading a bright thin Cr-enriched oxide was dominate and for hold-times a dark and slightly thicker Nb-enriched oxide was dominant These oxide types could be related to the oxidation of δ-phase and the matrix respectively. The influence of δ-phase precipitates on crack propagation is discussed.  相似文献   

15.
This paper presents some of our recent results from an ongoing collaborative research programme on creep-fatigue behaviour of two advanced nickel base superalloys for turbine disc applications. The role of creep, fatigue and oxidation in crack growth has been investigated at 650°C under typical loading waveforms at selected loading frequencies. Load-line deflections were monitored in selected tests under static and long dwell loading conditions. Scanning electron microscopy was adopted to identify the fracture mode and to facilitate the evaluation of oxidation.

The results show that mixed time and cycle dependent crack growth seems to be the predominant crack growth mode in the two PM nickel alloys studied. Whilst limited creep may be present at the crack tip, particularly under static and long dwell loading conditions, oxidation appears to be the predominant mechanism for crack growth under the test conditions examined.  相似文献   


16.
This paper investigates the cryogenic fatigue delamination behavior of glass fiber reinforced polymer woven laminates under Mode III loading. Fatigue delamination tests were conducted using split cantilever beam specimens at room temperature, liquid nitrogen temperature (77 K) and liquid helium temperature (4 K). A finite element analysis was also employed to calculate the energy release rate. The temperature dependence of the fatigue delamination growth rate vs. energy release rate range is discussed. Fracture surfaces were examined by scanning electron microscopy to identify the delamination mechanisms under fatigue loading. The important conclusion we reach is that the Mode III fatigue delamination growth rates of woven laminates at cryogenic temperatures are lower than that at room temperature.  相似文献   

17.
Cyclic crack growth resistance tests of AMg6N alloy under loading at frequencies of 20 to 10 kHz have demonstrated that the rate of fatigue crack propagation decreases with increasing frequency and the threshold stress intensity factors increase exponentially with the frequency of strain cycling. Fractographic observations of fracture surfaces of the specimens have revealed that an increase in the loading frequency is accompanied by a decrease in the fatigue striation spacing and in the size of the striation microzones by intnsifying the processes of secondary cracking and the formation of fretting products. This leads to a decrease in the rate of fatigue crack propagation and an increase in the threshold values of the stress intensity factors. An increase in the asymmetry of the loading cycles reduces the contribution of delamination and the formation of fretting products to the process of fracture of the alloy and results in a smaller fraction of the striation relief and in an earlier occurrence of the elements of quasistatic fracture by dimples, which is the cause of the reduction in characteristics of the cyclic crack growth resistance under asymmetrical loading. Institute for Problems of Strength, National Academy of Sciences of Ukraine, Kiev, Ukraine. Translated from Problemy Prochnosti, No. 2, pp. 94–105, March–April, 1999.  相似文献   

18.
Crack growth experiments have been carried out under combined creep and fatigue loading at 700° C on a hot isostatically pressed powder nickel alloy. A fractographic investigation has been undertaken of the modes of failure over a frequency range of 0.001 to 10 Hz. The observations indicate that under static loading and at low frequencies failure is intergranular and controlled by creep processes, whereas at high frequencies a transgranular fatigue fracture is obtained. The transition from creep to fatigue behaviour is found to be progressive, and to begin at a lower frequency the higher the ratio of cyclic to mean load. In the transition region a mixed intergranular and transgranular fracture surface is observed, which correlates well with the recorded proportion of creep to fatigue crack growth.  相似文献   

19.
ABSTRACT Fatigue crack growth of fibre reinforced metal laminates (FRMLs) under constant and variable amplitude loading was studied through analysis and experiments. The distribution of the bridging stress along the crackline in centre‐cracked tension (CCT) specimen of FRMLs was modelled numerically, and the main factors affecting the bridging stress were identified. A test method for determining the delamination growth rates in a modified double cracked lap shear (DCLS) specimen was presented. Two models, one being fatigue‐mechanism‐based and the other phenomenological, were developed for predicting the fatigue life under constant amplitude loading. The fatigue behaviour, including crack growth and delamination growth, of glass fibre reinforced aluminium laminates (GLARE) under constant amplitude loading following a single overload was investigated experimentally, and the mechanisms for the effect of a single overload on the crack growth rates and the delamination growth rates were identified. An equivalent closure model for predicting crack‐growth in FRMLs under variable amplitude loading and spectrum loading was presented. All the models presented in this paper were verified by applying to GLARE under constant amplitude loading and Mini‐transport aircraft wing structures (TWIST) load sequence. The predicted crack growth rates are in good agreement with test results.  相似文献   

20.
An investigation has been carried out on the slow crack growth behaviour of an advanced Si3N4 ceramic material at room temperature at different loading frequencies. The results clearly show a detrimental effect of cyclic loading on crack growth rate in terms of time and a reduced crack growth resistance with increasing cyclic frequency. Crack growth rates can be described by the Paris power-law expression for both static and cyclic loading, but the exponent n increases with decreasing loading frequency. Further support for the existence of mechanical fatigue in this material is provided from experiments involving alternate cyclic and static fatigue using the same specimen, which show substantial differences in crack growth rate in terms of time. Removal of crack wakes resulted in an unchanged crack growth rate under sustained load, which suggests that the crack wake does not play a key role in enhanced crack growth under cyclic loading. The likely crack growth mechanism is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号