首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The crystal structure of the recombinant form of rat liver fatty acid-binding protein was completed to 2.3 A and refined to an R factor of 19.0%. The structural solution was obtained by molecular replacement using superimposed polyalanine coordinates of six intracellular lipid-binding proteins as a search probe. The entire amino acid sequence of rat liver fatty acid-binding protein along with an amino-terminal formyl-methionine was modeled in the crystal structure. In addition, the crystal was obtained in the presence of oleic acid, and the initial electron density clearly showed two fatty acid molecules bound within a central cavity. The carboxylate of one fatty acid molecule interacts with arginine 122 and is shielded from free solvent. It has an overall bent conformation. The more solvent-exposed carboxylate of the other oleate is located near the helix-turn-helix that caps one end of the beta-barrel, while the acyl chain lies in the interior. The cavity contains both polar and nonpolar residues but also shows extensive hydrophobic character around the nonpolar atoms of the ligands. The primary and secondary oleate binding sites appear to be totally interdependent, mainly because favorable hydrophobic interactions form between both aliphatic chains.  相似文献   

2.
Proteins can be denatured by pressures of a few hundred MPa. This finding apparently contradicts the most widely used model of protein stability, where the formation of a hydrophobic core drives protein folding. The pressure denaturation puzzle is resolved by focusing on the pressure-dependent transfer of water into the protein interior, in contrast to the transfer of nonpolar residues into water, the approach commonly taken in models of protein unfolding. Pressure denaturation of proteins can then be explained by the pressure destabilization of hydrophobic aggregates by using an information theory model of hydrophobic interactions. Pressure-denatured proteins, unlike heat-denatured proteins, retain a compact structure with water molecules penetrating their core. Activation volumes for hydrophobic contributions to protein folding and unfolding kinetics are positive. Clathrate hydrates are predicted to form by virtually the same mechanism that drives pressure denaturation of proteins.  相似文献   

3.
The crystal structure of the high-potential iron-sulfur protein (HiPIP) isolated from Chromatium purpuratum is reported at 2.7 A resolution. The three HiPIP molecules in the asymmetric unit of the crystals form one and one-half dimers. Two molecules are related by a noncrystallographic symmetry rotation of approximately 175 degrees with negligible translation along the dyad axis. The third molecule in the asymmetric unit also forms a dimer with a second HiPIP molecule across the crystallographic 2-fold symmetry axis. The Fe4S4 clusters in both the crystallographic and noncrystallographic dimers are separated by approximately 13.0 A. Solution studies give mixed results regarding the oligomeric state of the C. purpuratum HiPIP. A comparison with crystal structures of HiPIPs from other species shows that HiPIP tends to associate rather nonspecifically about a conserved, relatively hydrophobic surface patch to form dimers.  相似文献   

4.
The structure of the detergent, ocytyl hydroxyethylsufoxide (C8(HE)SO), bound to the OmpF porin from E coli (in the trigonal crystal form) has been determined by neutron crystallography. Due to a dynamic exchange of detergent molecules with their environment they are not ordered on an atomic scale. The structure reported here is therefore at a resolution of approximately 16 A. The X-ray crystallographically determined structure of the protein provides a starting point for the neutron analysis in which the detergent is visualized primarily thanks to its high contrast against D2O. The structure shows the detergent to be located mainly in two areas. It forms toroidal annuli around each OmpF trimer, these annuli fusing to form a detergent belt surrounding a solvent filled column traversing the crystal. Those areas of the protein to which the detergent binds are formed almost exclusively of hydrophobic residues and form a band about 30 A high around the trimer. Its upper and lower bounds are defined by two bands of aromatic residues, tyrosines pointing away from the detergent belt and interacting with the polar headgroups while phenylalanines point inwards. This strongly suggests that the same areas define, in vivo, the location at which protein interacts with lipid. The hydrophobic moiety of detergent is also found mediating the hydrophobic protein-protein interactions at the interface between two trimers on the crystallographic two-fold axis.  相似文献   

5.
Trophinin and tastin form a cell adhesion molecule complex that potentially mediates an initial attachment of the blastocyst to uterine epithelial cells at the time of implantation. Trophinin and tastin, however, do not directly bind to each other, suggesting the presence of an intermediary protein. The present study identifies a cytoplasmic protein, named bystin, that directly binds trophinin and tastin. Bystin consists of 306 amino acid residues and is predicted to contain tyrosine, serine, and threonine residues in contexts conforming to motifs for phosphorylation by protein kinases. Database searches revealed a 53% identity of the predicted peptide sequence with the Drosophila bys (mrr) gene. Direct protein-protein interactions of trophinin, tastin, and bystin analyzed by yeast two-hybrid assays and by in vitro protein binding assays indicated that binding between bystin and trophinin and between bystin and tastin is enhanced when cytokeratin 8 and 18 are present as the third molecule. Immunocytochemistry of bystin showed that bystin colocalizes with trophinin, tastin, and cytokeratins in a human trophoblastic teratocarcinoma cell, HT-H. It is therefore possible that these molecules form a complex and thus are involved in the process of embryo implantation.  相似文献   

6.
BACKGROUND: The phosphoenolpyruvate:sugar phosphotransferase system (PTS) is a bacterial and mycoplasma system responsible for the uptake of some sugars, concomitant with their phosphorylation. The sugar-specific component of the system, enzyme II (EII),consists of three domains, EIIA, EIIB and EIIC. EIIA and ELLB are cytoplasmic and EIIC is an integral membrane protein that contains the sugar-binding site. Phosphoenolpyruvate (PEP) provides the source of the phosphoryl group, which is transferred via several phosphoprotein intermediates, eventually being transferred to the internalized sugar. Along the pathway, EIIA accepts a phosphoryl group from the phosphocarrier protein HPr and transfers it to EIIB. The structure of the glucose-specific EIIA (EIIAglc) from Mycoplasma capricolum reported here facilitates understanding of the nature of the interactions between this protein and its partners. RESULTS: The crystal structure of EIIAglc from M. capricolum has been determined at 2.5 A resolution. two neighboring EIIAglc molecules associate with one another in a front-to-back fashion, such that Glu149 of one molecule forms electrostatic interactions with the active-site histidine residues, His90 and His75, of the other. Glu149 is therefore considered to mimic the interaction that a phosphorylated histidine of a partner protein makes with EIIA. Another interaction, an ion pair between the active-site Asp94 and Lys168 of a neighboring molecule, may be analogous to the interaction between Asp94 of EIIAglc and Arg17 of HPr. Analysis of molecular packing in this crystal, and in the crystals of two other homologous proteins from Escherichia coli and Bacillus subtilis, reveals that in all cases active-site hydrophobic residues are involved in crystal contacts, but in each case a different region of the neighboring molecule is involved. The transition-state complexes of M. capricolum EIIAglc with HPr and EIIBglc have been modeled; in each case, different structural units are shown to interact with EIIAglc. Many of the interactions are hydrophobic with no sequence specificity. The only specific interaction, other than that formed by the phosphoryl group, involves ion pairs between two invariant aspartate residues of EIIAglc and arginine/lysine residues of HPr or EIIBglc. CONCLUSIONS: The non-discriminating nature of the hydrophobic interactions that EIIAglc forms with a variety of partners may be a consequence of the requirement for interaction with a variety of proteins that show no sequence or structural similarity. Nevertheless, specificity is provided by an ion-pair interaction that is enhanced by the apolar nature of the interface.  相似文献   

7.
The aim of this work was to define the chemical structure of compounds self-assembling in water solutions, which appear to interact with proteins as single ligands with their supramolecular nature preserved. For this purpose the ligation to proteins of bis azo dyes, represented by Congo red and its derivatives with designed structural alterations, were tested. The three parameters which characterize the reactivity of supramolecular material were determined in the same conditions for all studied dyes. These were: A) stability of the assembly products; B) binding to heat-denatured protein (human IgG); and C) binding to native protein (rabbit antibodies in the immune complex) measured by the enhancement of hemagglutination. The structural differences between the Congo red derivatives concerned the symmetry of the molecule and the structure of its non-polar component, which occupies the central part of the dye molecule and is thought to be crucial for self-assembly. Other dyes were also studied for the same purpose: Evans blue and Trypan blue, bis-ANS and ANS, as well as a group of compounds with a structural design unlike that of bis azo dyes. Compounds with rigid elongated symmetric molecules with a large non-polar middle fragment are expected to form a ribbon-like supramolecular organization in assembling. They appeared to have ligation properties related to their self-assembling tendency. The compounds with different structures, not corresponding to bis azo dyes, did not reveal ligation capability, at least in respect to native protein. The conditions of binding to denatured proteins seem less restrictive than the conditions of binding to native molecules. The molten hydrophobic protein interior becomes a new binding area allowing for complexation of even non-assembled molecules.  相似文献   

8.
It is commonly assumed that essentially all of the water in cells has the same ideal motional and colligative properties as does water in bulk liquid state. This assumption is used in studies of volume regulation, transmembrane movement of solutes and electrical potentials, solute and solution motion, solute solubility and other phenomena. To get at the extent and the source of non-ideally behaved water (an operational term dependent on the measurement method), we studied the motional and colligative properties of water in cells, in solutions of amino acids and glycine peptides whose surface characteristics are known, and in solution of bovine serum albumin, hemoglobin and some synthetic polypeptides. Solutions of individual amino acids with progressively larger hydrophobic side chains showed one perturbed water molecule (structured-slowed in motion) per nine square angstroms of hydrophobic surface area. Water molecules adjacent to hydrophobic surfaces form pentagonal structural arrays, as shown by X-ray diffraction studies, that are reported to be disrupted by heat, electric field, hydrostatic pressure and phosphorylation state. Hydrophilic amino acids demonstrated water destructuring (increased motion) that was attributed to dielectric realignment of dipolar water molecules in the electric field between charge groups. In solutions of proteins, several methods indicate the equivalent of 2-8 layers of structured water molecules extending beyond the protein surface, and we have recently demonstrated that induced protein conformational change modifies the extent of non-ideally behaved water. Water self-diffusion rate as measured in three different cell types was about half that of bulk water, indicating that most of the water in these cells was slower in motion than bulk water. In different cell types the extent of osmotically perturbed water ranged from less that half to almost all of the intracellular water. The assumption that essentially all intracellular water has ideal osmotic and motional behavior is not supported by the experimental findings. The non-ideally of cell water is an operational term. Therefore, the amount of non-ideally behaving water is dependent on the characteristics of water targeted, i.e. the measurement method, and a large fraction of it is explainable in mechanistic terms at a molecular level based on solute-solvent interactions.  相似文献   

9.
The use of polyurethane foam appears to be efficient to extract hydrophobic pollutants from aqueous media. Their adsorption is the result of spontaneous hydrophobic interactions with the foam, The rate of adsorption is a function of the diffusion of the molecules into the foam as well as their hydrophilic/lipophilic balance. A mixture of different molecules modifies the adsorption capacities of each type of molecule on the foam, probably resulting from stacking phenomena between the molecules. The Pseudomonas species can grow in the presence of the polyurethane foam and be adsorbed on it. Moreover, a strain of Pseudomonas pseudoalcaligenes tested in this study can use adsorbed biphenyl as the sole carbon source. Polyurethane foam therefore shows favorable characteristics for being chosen as a method of concentrating aromatic compounds and optimizing the rate of degradation of these molecules by bacteria.  相似文献   

10.
During the characterization of mutants and covalently inhibited complexes of Fusarium solani cutinase, nine different crystal forms have been obtained so far. Protein mutants with a different surface charge distribution form new intermolecular salt bridges or long-range electrostatic interactions that are accompanied by a change in the crystal packing. The whole protein surface is involved in the packing contacts and the hydrophobicities of the protein surfaces in mutual contact turned out to be noncorrelated, which indicates that the packing interactions are nonspecific. In the case of the hydrophobic variants, the packing contacts showed some specificity, as the protein in the crystal tends to form either crystallographic or noncrystallographic dimers, which shield the hydrophobic surface from the solvent. The likelihood of surface atoms to be involved in a crystal contact is the same for both polar and nonpolar atoms. However, when taking areas in the 200-600 A2 range, instead of individual atoms, the either highly hydrophobic or highly polar surface regions were found to have an increased probability of establishing crystal lattice contacts. The protein surface surrounding the active-site crevice of cutinase constitutes a large hydrophobic area that is involved in packing contacts in all the various crystalline contexts.  相似文献   

11.
The effects of the adsorption of the fluorescent potential-sensitive dyes RH-421, RH-237 and RH-160 on the bilayer lipid membrane were studied. It was shown that a dipole potential drop, positive in the hydrophobic part of the membrane, arose due to the dye adsorption. The dye adsorption led to a considerable increase of the rate constant of hydrophobic anion translocation through the membrane, but did not affect their partition coefficient between membrane and water. It implies that the region of the membrane where the potential drops is located deeper than the adsorption plane of hydrophobic ions. The values of boundary potential differences were estimated by two independent methods with unilateral and bilateral application of the dyes to lipid bilayer membranes. The results suggest that RH dye molecules penetrate through the lipid bilayers. The values of zeta-potential in liposomes did not change on dye adsorption. Hence, dye molecules are adsorbed in a form that does not change the surface charge. We estimated the effects of electric field of dye dipole layer on an individual dipole located in the same layer and on ion transport through a membrane protein Na+/K+-ATPase. It turned out that the local electric field of each dye dipole decayed so rapidly that a neighbouring dye molecule did not feel it. It also appeared that RH dyes could have but a minor effect on the electrogenic transport performed by the sodium pump in the examined range of dye concentrations.  相似文献   

12.
Cellular processes are mediated by complex networks of molecular interactions. Dissection of their role most commonly is achieved by using genetic mutations that alter, for example, protein-protein interactions. Small molecules that accomplish the same result would provide a powerful complement to the genetic approach, but it generally is believed that such molecules are rare. There are several natural products, however, that illustrate the feasibility of this approach. Split-pool synthesis now provides a simple mechanical means to prepare vast numbers of complex, even natural product-like, molecules individually attached to cell-sized polymer beads. Here, we describe a genetic system compatible with split-pool synthesis that allows the detection of cell-permeable, small molecule inhibitors of protein-protein interactions in 100- to 200-nl cell culture droplets, prepared by a recently described technique that arrays large numbers of such droplets. These "nanodroplets" contain defined media, cells, and one or more beads containing approximately 100 pmol of a photoreleasable small molecule and a controlled number of cells. The engineered Saccharomyces cerevisiae cells used in this study express two interacting proteins after induction with galactose whose interaction results in cell death in the presence of 5-fluoroorotic acid (inducible reverse two-hybrid assay). Disruption of the interaction by a small molecule allows growth, and the small molecule can be introduced into the system hours before induction of the toxic interaction. We demonstrate that the interaction between the activin receptor R1 and the immunophilin protein FKBP12 can be disrupted by the small molecule FK506 at nanomolar concentrations in nanodroplets. This system should provide a general method for selecting cell-permeable ligands that can be used to study the relevance of protein-protein interactions in living cells or organisms.  相似文献   

13.
The physiochemical bases of amino acid preferences for alpha-helical, beta-strand, and other main-chain conformational states in proteins is controversial. Hydrophobic effect, side-chain conformational entropy, steric factors, and main-chain electrostatic interactions have all been advanced as the dominant physical factors which determine these preferences. Many attempts to resolve the controversy have focused on small model systems. The disadvantage of such systems is that the amino acids in small molecules are largely exposed to the solvent. In proteins, however, the amino acids are in contact with the solvent to a different degree, causing a large variability of strengths of all interactions. The estimates of mean strengths of interactions in the actual protein environment are therefore essential to resolve the controversy. In this work the experimental protein structures are used to estimate the mean strengths of various interactions in proteins. The free energy contributions of the interactions are implemented into the Lifson-Roig theory to calculate the helix and strand free energy profiles. From the profiles the secondary structures of proteins and peptides are predicted using simple rules. The role of hydrophobic effect, side-chain conformational entropy, and main-chain electrostatic interactions in determining the secondary structure of proteins is assessed from the abilities of different models, describing stability of secondary structures, to correctly predict alpha-helices, beta-strands and coil in 130 proteins. The three-state accuracy of the model, which contains only the free energy terms due to the main-chain electrostatics with 40 coefficients, is 68.7%. This accuracy is approaching to the accuracy of currently the best secondary structure prediction algorithm based on neural networks (72%); however, many thousands of parameters have to be optimized during the training of the neural networks to reach this level of accuracy. The correlation coefficient between the calculated and the experimental helix contents of 37 alanine based peptides is 0.91. If the hydrophobic and the side-chain conformational entropy terms are included into the helix-coil transition parameters, the accuracy of the algorithm does not improve significantly. However, if the main-chain electrostatic interactions are excluded from the helix-coil and strand-coil transition parameters, the accuracy of the algorithm reaches only 59.5%. These results support the dominant role of the short-range main-chain electrostatics in determining the secondary structure of proteins and peptides. The role of the hydrophobic effect and the side-chain conformational entropy is small.  相似文献   

14.
The molten globule, a widespread protein-folding intermediate, can attain a native-like backbone topology, even in the apparent absence of rigid side-chain packing. Nonetheless, mutagenesis studies suggest that molten globules are stabilized by some degree of side-chain packing among specific hydrophobic residues. Here we investigate the importance of hydrophobic side-chain diversity in determining the overall fold of the alpha-lactalbumin molten globule. We have replaced all of the hydrophobic amino acids in the sequence of the helical domain with a representative amino acid, leucine. Remarkably, the minimized molecule forms a molten globule that retains many structural features characteristic of a native alpha-lactalbumin fold. Thus, nonspecific hydrophobic interactions may be sufficient to determine the global fold of a protein.  相似文献   

15.
The conformational stability of the homodimeric pea lectin was determined by both isothermal urea-induced and thermal denaturation in the absence and presence of urea. The denaturation profiles were analyzed to obtain the thermodynamic parameters associated with the unfolding of the protein. The data not only conform to the simple A2 if 2U model of unfolding but also are well described by the linear extrapolation model for the nature of denaturant-protein interactions. In addition, both the conformational stability (DeltaGs) and the DeltaCp for the protein unfolding is quite high, at about 18.79 kcal/mol and 5.32 kcal/(mol K), respectively, which may be a reflection of the relatively larger size of the dimeric molecule (Mr 49 000) and, perhaps, a consequent larger buried hydrophobic core in the folded protein. The simple two-state (A2 if 2U) nature of the unfolding process, with the absence of any monomeric intermediate, suggests that the quaternary interactions alone may contribute significantly to the conformational stability of the oligomer-a point that may be general to many oligomeric proteins.  相似文献   

16.
17.
The folding of Ser-Tyr-Pro-Phe-Asp-Val (SYPFDV), and sequence variants of this peptide (SYPYD and SYPFD) are studied computationally in an explicit water environment. An atomically detailed model of the peptide is embedded in a sphere of TIP3P water molecules and its optimal structure is computed by simulated annealing. At distances from the peptide that are beyond a few solvation shells, a continuum solvent model is employed. The simulations are performed using a mean field approach that enhances the efficiency of sampling peptide conformations. The computations predict a small number of conformations as plausible folded structures. All have a type VI turn conformation for the peptide backbone, similar to that found using NMR. However, some of the structures differ from the experimentally proposed ones in the packing of the proline ring with the aromatic residues. The second most populated structure has, in addition to a correctly folded backbone, the same hydrophobic packing as the conformation measured by NMR. Our simulations suggest a kinetic mechanism that consists of three separate stages. The time-scales associated with these stages are distinct and depend differently on temperature. Electrostatic interactions play an initial role in guiding the peptide chain to a roughly correct structure as measured by the end-to-end distance. At the same time or later the backbone torsions rearrange due to local tendency of the proline ring to form a turn: this step depends on solvation forces and is helped by loose hydrophobic interactions. In the final step, hydrophobic residues pack against each other. We also show the existence of an off the pathway intermediate, suggesting that even in the folding of a small peptide "misfolded" structures can form. The simulations clearly show that parallel folding paths are involved. Our findings suggest that the process of peptide folding shares many of the features expected for the significantly larger protein molecules.  相似文献   

18.
Phosphatidylcholine dispersed on Celite was rapidly solubilized by neutral bovine serum albumin solutions. Stable protein-lipid complexes were isolated by Agrose gel filtration or by ultracentrifugal flotation in high density solvents, and the physicochemical properties of the complexes were investigated in terms of the stoichiometry of binding, effect of fatty acid ligands on phosphatidylcholine binding, effect of high ionic strength on the stability of the complexes, intrinsic fluorescence and circular dichroism spectra, and sedimentation velocity coefficients. Complexes containing from 2 to 30 phosphatidylcholine molecules per protein molecule were observed; however, no saturation of binding sites could be detected in this range of molar ratios. Oleic acid binding by serum albumin prevents interaction of the protein with phosphatidylcholine, indicating possible competition of these ligands at low contents of the phospholipid. For molar ratios of up to 10 phosphatidylcholine molecules per serum albumin, binding is primarily due to hydrophobic interactions that have no effect on the overall shape and secondary structure of the native protein except for local modifications at tryptophan residues, whose fluorescence becomes quenched and blue shifted on phosphatidylcholine binding. Similar phosphatidylcholine uptake experiments performed with a series of globular proteins indicated that the lipid extraction from Celite surfaces is a non-specific process, accelerated by several other proteins (e.g. aldolase, egg albumin, chymotrypsinogen, soybean trypsin inhibitor, and the major apolipoprotein from bovine serum high density lipoprotein). Formation of stable protein-lipid complexes, however, was only observed with bovine serum albumin, which in contrast to the other proteins is known to have affinity binding sites for anions with hydrophobic side chains.  相似文献   

19.
Fibrinogen plays a central role in surface-induced thrombosis. However, the interactions of fibrinogen with different substrata remain poorly understood because of the difficulties involved in imaging globular proteins under aqueous conditions. We present detailed three dimensional molecular scale images of fibrinogen molecules on a hydrophobic surface under aqueous conditions obtained by atomic force microscopy. Hydrated fibrinogen monomers are visualized as overlapping ellipsoids; dimers and trimers have linear conformations predominantly, and increased affinity for the hydrophobic surface compared with monomeric fibrinogen. The results demonstrate the importance of hydration on protein structure and properties that affect surface-dependent interactions.  相似文献   

20.
The modulatory action of Ca2+-calmodulin on multiple targets is inhibited by trifluoperazine, which competes with target proteins for calmodulin binding. The structure of calmodulin crystallized with two trifluoperazine molecules is determined by X-ray crystallography at 2.74 A resolution. The X-ray data together with the characteristic and distinct signals obtained by circular dichroism in solution allowed us to identify the binding domains as well as the order of the binding of two trifluoperazine molecules to calmodulin. Accordingly, the binding of trifluperazine to the C-terminal hydrophobic pocket is followed by the interaction of the second drug molecule with an interdomain site. Recently, we demonstrated that the two bisindole derivatives, vinblastine and KAR-2 [3"-(beta-chloroethyl)-2",4"-dioxo-3, 5"-spirooxazolidino-4-deacetoxyvinblastine], interact with calmodulin with comparable affinity; however, they display different functional effects [Orosz et al. (1997) British J. Pharmacol. 121, 955-962]. The structural basis responsible for these effects were investigated by circular dichroism and fluorescence spectroscopy. The data provide evidence that calmodulin can simultaneously accommodate trifluoperazine and KAR-2 as well as vinblastine and KAR-2, but not trifluoperazine and vinblastine. The combination of the binding and structural data suggests that distinct binding sites exist on calmodulin for vinblastine and KAR-2 which correspond, at least partly, to that of trifluoperazine at the C-terminal hydrophobic pocket and at an interdomain site, respectively. This structural arrangement can explain why these drugs display different anticalmodulin activities. Calmodulin complexed with melittin is also able to bind two trifluoperazine molecules, the binding of which appears to be cooperative. Results obtained with intact and proteolytically cleaved calmodulin reveal that the central linker region of the protein is indispensable for simultanous interactions with two molecules of either identical or different ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号