首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
通过2TiC-Ti-1.2Al体系的原位热压反应制备了Ti3AlC2陶瓷,然后以59.2Ti-30.8Al-10Ti3AlC2(wt%)为反应体系,采用放电等离子烧结技术制备出Ti2AlC/TiAl基复合材料。借助XRD、SEM分析了产物的相组成和微观结构,并测量了其室温力学性能。结果表明:原位热压烧结产物由Ti3AlC2和TiC相组成,Ti3AlC2呈典型的层状结构,TiC颗粒分布在其间。SPS法制备的Ti2AlC/TiAl基复合材料主要由TiAl、Ti3Al和Ti2AlC相组成,Ti2AlC增强相主要分布于基体晶界处,表现为晶界/晶内强化作用。力学性能测试表明:Ti2AlC/TiAl基复合材料的密度、维氏硬度、断裂韧性和抗弯强度分别为3.85 g/cm3、5.37 GPa、7.17 MPa?m1/2和494.85 MPa。  相似文献   

2.
以Ti_3Al C_2和Ni合金粉为原料,采用原位热压烧结法制备了Ti C_x/Ni合金复合材料。高温下Ni合金引起Ti_3Al C_2分解形成Ti C_x,Al原子和少部分Ti原子从基体中脱离,并与Ni合金发生反应。添加20%Ti_3Al C_2和40%(体积分数,下同)Ti_3Al C_2时,Ti C_x中x的值分别为0.625和0.715。利用XRD、SEM和EDS等表征方法对复合材料进行物相分析以及微观结构分析。研究表明,原位生成的Ti C_x与Ni合金基体结合牢固,所制备的复合材料具有优异的力学性能,添加20%Ti_3Al C_2和40%Ti_3Al C_2时,复合材料的压缩强度分别达到了2.2和2.09 GPa,相应的压缩断裂应变分别为9.6%和8.5%。  相似文献   

3.
采用同轴送粉激光熔覆技术在 Ti6Al4V 钛合金表面成功制备了未添加和添加质量分数为 2% CeO2 的 Ti6Al4V+NiCr-Cr3C2 多道搭接熔覆层,运用渗透探伤技术、光学显微镜、X 射线衍射仪、扫描电镜、能谱分析仪、电子探针等分析方法研究了 CeO2 添加对熔覆层成形质量、微观组织和元素分布的影响规律。 结果表明,添加 CeO2 完全抑制了熔覆层表面裂纹,显著降低了气孔率(2. 76%→1. 65%)。 熔覆层主要由 β 固溶体(CrTi4 )和缺位型碳化钛(TiCx )组成。 除了新结晶的 CeO2 外,添加 CeO2 对熔覆层物相没有影响。 此外,添加 CeO2 致使基体 β 相中 Ni 和 Cr 元素呈现明显的偏析现象,且 Ni 元素偏析程度更加显著,而对 Al 和 V 元素均匀分布特征没有显著影响。 新析出的稀土氧化物 CeO2 主要分布于 TiCx 与 CrTi4 相界处。 添加 CeO2 细化了 TiCx 枝晶,降低了枝晶 TiCx 含量(55%→40%)。 熔覆层各微区(熔覆区、过渡区和结合区)碳化钛组织存在显著差异,其组织特征分别为枝晶状、颗粒状、细小针状。 缺位型碳化钛 TiCx 中 C 原子含量呈现明显差异,x 的取值范围为 0. 21 ~ 0. 74,且一次枝晶含碳量高于二次枝晶。 硬度和摩擦磨损测试结果表明,Ti6Al4V 基材、未添加和添加质量分数为 2% CeO2 激光熔覆层的显微硬度分别为 363. 2、488. 2 和 464. 2 HV0. 5 ,磨损率分别为 5. 62×10-6 、2. 5×10-7 和 2. 43×10-6 g / Nmin。  相似文献   

4.
采用真空熔炼法向NiTi二元合金中掺杂Pr稀土元素,制备了多组分原子分数的Ni50Ti50-xPrxx=0,0.1,0.3,0.5,0.7,0.9)合金。研究了Pr元素的添加对NiTi合金金相组织、相变温度和硬度的影响。结果表明,Ni50Ti50-xPrx合金由NiTi基体与NiPr夹杂相组成,其中Ni50Ti49.5Pr0.5合金的马氏体相变温度达73 ℃,合金的热滞窄至37 ℃,维氏硬度约为2850 MPa。Pr元素的添加显著降低了NiTi合金的马氏体相变温度,同时,与其他NiTi基合金相比,NiTiPr合金保持了较窄的热滞和较高的硬度。  相似文献   

5.
采用搅拌摩擦加工方法在Al基体中添加不同La2O3含量的混合粉末(Ni+La2O3),制备 (Ni+La2O3)/Al复合材料。采用SEM、EDS、 EPMA及XRD对复合区微观结构及相组成进行分析,采用室温拉伸试验对 (Ni+La2O3)/Al复合材料力学性能进行了测试。结果表明,随着La2O3含量的增加,(Ni+La2O3)/Al复合材料的组织和性能先变好后变差。当La2O3添加量达到5%时,复合材料中Al3Ni增强颗粒分布均匀、颗粒数量最多,块状的Ni粉团聚减少,其抗拉强度达到最大值215MPa,相比Ni/Al复合材料(抗拉强度176MPa),其抗拉强度提高了22%;当La2O3的添加量为7%时,复合材料中Al3Ni增强颗粒含量减少,块状Ni粉团聚重新出现,抗拉强度下降至201MPa。  相似文献   

6.
利用氩弧熔敷技术,在TC4合金表面原位合成了TiC-TiB2增强镍基复合材料涂层,利用SEM和XRD等方法分析了涂层的显微组织并测试了涂层的显微硬度.结果表明,熔敷组织主要由TiC,TiB2和Ti(Ni,Cr)组成,TiB2主要以棒状形式存在;在所形成的TiC-TiB2/Ti复合材料层中,TiC和TiB2颗粒分布均匀且尺寸细小;熔敷涂层由表及里组织不同;熔敷层与基体呈冶金结合,无气孔、裂纹等缺陷;涂层的显微硬度达到13.8 GPa,较基体提高了4.5倍.  相似文献   

7.
采用Ni-Ti复合箔片作为中间层,在990 ℃、低连接压力(0.1 MPa)下,通过瞬时液相(TLP)扩散连接制备了Ti3Al/Ti2AlNb异种合金接头。分析了保温时间(10~90 min)对Ti3Al/Ti2AlNb接头微观结构及力学性能的影响,并研究了TLP扩散连接接头的界面演变和形成机制。结果表明,Ti3Al/Ti2AlNb接头具有典型的“Ti3Al | Al0.5Nb0.5Ti3 | 残余 Ni | NiTi | NiTi2 | 残余 Ti | Al0.5Nb0.5Ti3 | Ti2AlNb”多层梯度结构。随着保温时间的延长,接头的抗剪切强度先增大后减小,当保温时间达到60 min时,Ti3Al/Ti2AlNb接头的抗剪切强度最大,达到167±12 MPa。另外,接头的断裂主要发生在Ti2AlNb/Ti附近的NiTi2层,并向Ti层延伸,呈现出脆性断裂的特征。  相似文献   

8.
以CuO-Al作为反应体系,在6063铝合金中原位反应生成Al2O3颗粒,采用近液线相铸造的方法制备6063Al-XAl2O3(X=0,2,4,6)复合材料。研究原位反应颗粒Al2O3与6063铝合金自带的原位结晶颗粒Mg2Si的形状、尺寸、数量、分布、界面特征等对合金微观组织和耐磨性的影响机理。结果表明,在6063铝合金中原位反应生成尺寸在亚微米级的近球形θ-Al2O3颗粒;其(311)晶面与6063铝合金基体(111)晶面成共格界面;6063铝合金中Mg2Si尺寸大约为100nm,呈条带状,其(02-2)与Al基体(111)晶面属于共格界面。随着Al2O3颗粒含量的增加,6063铝基复合材料的晶粒组织形貌由蔷薇状逐渐向等轴晶转变,晶粒尺寸逐渐减小。当Al2O3的质量分数为6%时,复合材料组织由等轴晶和细小的柱状晶组成。载荷为50N时,6063铝合金的磨损量为6.72mg,6063-6Al2O3复合材料的磨损量为1.63mg,相对于6063铝合金降低75.7%。原位颗粒(Al2O3+Mg2Si)与铝基体都成共格界面,界面之间无污染,界面结合强度高,在磨损过程中,不易从基体中脱落,承当磨损过程中的大部分载荷。原位生成高硬度的Al2O3颗粒与原位结晶颗粒Mg2Si协同作用共同提高复合材料的耐磨性。外加载荷为40N时,随着增强相质量分数的增加,复合材料的磨损机制由粘着磨损转变为磨粒磨损。6063铝合金磨损机制以严重的粘着磨损为主。6063-2Al2O3复合材料磨损机制主要以粘着磨损为主,6063-4 Al2O3和6063-6Al2O3复合材料主要表现为磨粒磨损。  相似文献   

9.
用热压的方法合成了若干MAX相化合物,包括相(Ti2AlC和Ti2AlN)和312相(Ti3SiC2和Ti3AlC2);研究了它们在1 mol/L HCl、1 mol/L NaOH和1 mol/L H2SO4中的电化学性质及其结构与其稳定性的关系.结果表明:在所有溶液中,312型MAX相比211相更稳定;Ti3SiC2 和Ti3AlC2几乎在所有溶液里都发生钝化,而Ti2AlC和Ti2AlN在1 mol/L HCl中活跃地溶解,还伴有大量气泡产生;Ti3SiC2比Ti2AlC、Ti2AlN 和Ti3AlC2更稳定.  相似文献   

10.
为突破 Ti6Al4V 合金在关键运动零部件的应用限制,提高其耐磨减摩性能并延长稳定服役周期,采用激光熔覆技术成功在其表面制备 Co-5%Ti 3 SiC2 、Co-5%Ti 3 SiC2 -10%Cu、Co-5%Ti 3 SiC2 -20%Cu (wt. %) 三种配比的复合涂层,系统分析三种复合涂层的微观组织、物相、显微硬度以及室温和 600 ℃ 下的摩擦学性能和磨损机理。 研究发现:Co-5%Ti 3 SiC2 涂层主要由γ-Co 固溶体、润滑相 Ti 3 SiC2 、硬质相 TiC 和金属间化合物 CoTi x 构成,含 Cu 涂层出现新物相 Cu 及 CuTi x。 性能上,复合涂层的显微硬度均得到大幅提高,达到 Ti6Al4V 基体(370 HV0. 5 )的 2. 1 ~ 2. 4 倍。 室温下,Co-5%Ti 3 SiC2 -10%Cu 涂层表现出最好的减摩性能,摩擦因数降低了 68. 7%;而在 600 ℃ 下,复合涂层发生严重氧化,形成氧化膜使磨损率降低,其中 Co-5%Ti 3 SiC2-20%Cu 涂层磨损率为 2. 5×10-7 mm 3 / N·m,表现出最好的耐磨性。 探索了一类新的耐磨减摩涂层体系,表现出良好的提升效果,并揭示了 MAX 相与传统软金属之间的协同润滑过程。  相似文献   

11.
《Acta Materialia》2007,55(13):4381-4390
The structural stability of Ti3AlC2 in Cu and the microstructure evolution of Cu–Ti3AlC2 composites prepared at different temperatures were investigated by high-resolution transmission electron microscopy and X-ray diffraction. A mild reaction between Ti3AlC2 and Cu occurred at 850–950 °C, and strong reactions occurred above 950 °C. The reaction was identified as diffusion of Al from Ti3AlC2 into Cu to form Cu(Al) solid solution. Ti3AlC2 retained its structure under the partial loss of Al. Further depletion of Al resulted in highly defective Ti3AlC2 accompanied by the inner diffusion of Cu into Ti3AlC2 along the passway left by the Al vacancies. When Al was removed, Ti3AlC2 decomposed and transformed into cubic TiCx. In addition, TiC twins formed by the aggregation of C vacancies at twin boundaries. With the help of first-principles calculation and image simulation, an ordered hexagonal TiCx was identified as a transition phase linking Ti3AlC2 and c-TiCx. The effect of the reaction and phase transformation on the microstructure and properties of Cu–Ti3AlC2 composites was also discussed.  相似文献   

12.
High-purity Ti3SiC2 compounds have been fabricated by infiltration of molten Si into a precursor, a partially sintered TiCx (x = 0.67) preform. The Si source and the TiCx preform were placed side by side on carbon cloth, and the system was heated to 1550 °C. Molten Si infiltrated the preform through the carbon cloth, and a direct reaction between TiCx and molten Si immediately occurred at the reaction temperature to yield pure Ti3SiC2. We could observe phase formation and the microstructure of the bulk products with time, which were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with energy-dispersive spectroscopy (EDS). Pure Ti3SiC2 compounds were formed on the exterior of the TiCx preform at 1550 °C when the sintered TiCx:Si ingot molar ratio was 3:1.4. At 1550 °C, no other minor phases were detected for any of the sintering time ranges.  相似文献   

13.
Ti3AlC2 has the properties of ceramics and metals. These excellent properties indicate that Ti3AlC2 is a very promising material to extensive applications. Ti3AlC2 ceramic material was prepared by mechanical alloying. The effects of milling time and sintering temperature on the fracture, microstructure and mechanical properties of Ti3AlC2 ceramic material were analyzed by laser particle analyzer, X-ray diffraction, and scanning electron microscopy. The experimental results showed that Ti3AlC2 had the best comprehensive properties after the composite powder was milled for 3 h and sintered at 1630°C for 2 h. The relative density, bending strength, and hardness of the sample reached 92.23%, 345.2 MPa, and HRA 34.1, respectively. The fracture surface indicated that the fracture of the material belonged to ductile rapture.  相似文献   

14.
The mechanically activated sintering process was adapted to synthesize Ti3AlC2 using 3Ti/Al/2C/0.05Sn powder mixtures. The result showed that the powders containing TiC, Ti3AlC2 and Ti2AlC were obtained by mechanical alloying (MA) 3Ti/Al/2C powders. Addition of appropriate Sn reduced the content of Ti2AlC and enhanced the synthesis of Ti3AlC2 significantly. The powders with highest content of Ti3AlC2 were obtained by MA 3Ti/Al/2C/0.05Sn powders. Through pressureless sintering the mechanical alloyed powders at 900–1100 °C for 2 h, the high purity Ti3AlC2 material with fine organization was produced.  相似文献   

15.
The (TiB2–TiCxNy)/Ni composites were fabricated by the method of combustion synthesis and hot press consolidation in a Ni–Ti–B4C–BN system. The effect of Ni content on the microstructure, hardness, compression properties and abrasive wear behavior of the composites has been investigated. The results indicate that with the increase in Ni content from 30 wt.% to 60 wt.%, the average size of the ceramic particles TiB2 and TiCxNy decreases from 5 μm to ≤ 1 μm, while the hardness and the abrasive wear resistance of the composites decrease. The composite with the Ni content of 30 wt.% Ni possesses the highest hardness (1560.8 Hv) and the best abrasive wear resistance. On another hand, with the increase in the Ni content, the compression strength increases firstly, and then decreases. The composite with 50 wt.% Ni possesses the highest compression strength (3.3 GPa). The hardness and fracture strain of the composite with 50 wt.% Ni are 1251.2 Hv and 3.9%, respectively.  相似文献   

16.
《Acta Materialia》2001,49(8):1463-1470
In situ toughened TiB2–TiCx composites were fabricated using reaction synthesis of B4C and Ti powders at high temperatures. The resulting materials possessed very high relative densities and well developed TiB2 plate-like grains, leading to a rather high fracture toughness, up to 12.2 MPa⋅m1/2. The microstructure was examined by means of XRD, SEM, TEM and EDAX. The reaction products mainly consisted of TiB2 and TiCx. No other phases, e.g. Ti3B4, TiB, Ti2B5 and free Ti, were observed regardless of whether the starting composition was Ti:B4C=3:1 or 4.8:1, and whether the sintering temperature was 1700 or 1800°C. The microstructural morphology is characterised by TiB2 plate-like grains distributed uniformly in the TiCx matrix. Some inclusions and defects were found in TiB2 grains. The very high reaction temperature was believed to be responsible for the formation of plate-like grains, which, in turn, is responsible for the much improved mechanical properties. The main toughening mechanisms were likely to be crack deflection, platelet pull-out and the micro-fracture of TiB2 grains.  相似文献   

17.
The oxidation resistance and thermal stability of Ti2AlC at 1600–1800 °C in air were studied by using induction heating method. The results showed that Ti2AlC could survive with relatively low oxidation rate at temperatures up to 1650 °C for a short period of time due to the formation of an Al2O3 inner layer with certain protectiveness. However, at 1700 and 1800 °C, severe oxidation of Ti2AlC happened, the entire Al2O3 inner layer no longer existed, and the whole oxide scale became porous, cracked and voluminous. In the oxidation processes, the Ti2AlC substrate decomposed to TiCx at 1700 °C, and transformed to Ti3AlC2 due to the reaction with TiCx at 1800 °C, indicating that the massive consumption of Al in Ti2AlC exceeded its deficiency tolerance.  相似文献   

18.
The processing of Al/TiO2 composite powders produced by high-energy mechanical milling leads to production of a range of valuable, titanium-based materials. They include Ti(Al,O)/Al2O3 and TixAly(O)/Al2O3 composite powders, bulk composites and Ti3Al/TiAl alloy powders, and corresponding bulk materials. The strength of the Ti(Al,O)/Al2O3 and TixAly(O)/Al2O3 composites is moderate, but their high-temperature oxidation resistance is exceptionally high, making the titanium-based composite powders favorable feedstock materials for protective coatings. The hardness of the Ti(Al,O)/Al2O3 and Ti3Al(O)/Al2O3 composites is also very high (10–16 GPa). For more information, contact D.L. Zhang, University of Waikato, Waikato Centre for Advanced Materials, Department of Materials and Process Engineering, Private Bag 3105, Hamilton, New Zealand; 011-64-7-838-4783; fax 011-64-7-838-4835; e-mail d.zhang@waikato.ac.nz.  相似文献   

19.
TiB2-WC ceramic-metal composite tool materials were fabricated using Co, Ni and (Ni, Mo) as sintering additives by vacuum hot-pressing technique. The microstructure and mechanical properties of the composite were investigated. The composite was analyzed by the observations of scanning electron microscope (SEM), X-ray diffraction (XRD) and energy dispersive spectrometry (EDS). The microstructure of TiB2-WC ceramic-metal composites consisted of the fine WC grains and uniform TiB2 grains. The brittle phase of Ni3B4 and a few pores were found in TiB2-WC-Ni ceramic-metal composite. A lot of pores and brittle phases such as W2CoB2 and Co2B were formed in TiB2-WC-Co ceramic-metal composite. The liquid phase of Co was consumed by the reaction which led to the formation of the pores and the coarse grains of TiB2. The pores, brittle phases and coarse grains of TiB2 were harmful to the improvement of the mechanical properties of the composite. The sintering additive of (Ni, Mo) had a significant effect on the density and the mechanical properties of TiB2-WC ceramic-metal composite. The formation of intermetallic compound of MoNi4 inhibited the consumption of liquid phase of (Ni, Mo). The liquid phase of (Ni, Mo) not only inhibited the formation of the pores and the coarse grains of TiB2 but also strengthened the interface energy between WC and TiB2 grains. The grain size was fine and the average relative density of TiB2-WC-(Ni, Mo) ceramic-metal composite reached 99.1%. The flexural strength, fracture toughness and Vickers hardness of TiB2-WC-(Ni, Mo) ceramic-metal composite were 1307.0 ± 121.4 MPa, 8.19 ± 0.29 MPa m1/2 and 22.71 ± 0.82 GPa, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号