共查询到19条相似文献,搜索用时 87 毫秒
1.
2.
自然场景中的文本图像具有十分复杂多变的特征,使用区域候选网络(Region Proposal Network, RPN)提取文本矩形位置候选框是不可或缺的一个步骤,能够极大地提升文本检测的精度。然而最近的研究表明,通过最小化平滑的L1损失函数来回归矩形候选框中心点、宽和高的方式容易产生边界信息缺失、回归不准确等问题。针对这一问题,提出了一种基于改进区域候选网络的场景文本检测模型。首先,使用残差网络和特征金字塔网络组成的骨干网络生成共享特征图。然后,使用改进的回归取点方式和基于顶点的VIOU损失函数(Vertex-IOU)在共享特征图上生成系列文本矩形候选框。接着,使用ROI Align将这些候选框转化为固定大小的特征图在全连接层进行边界框预测。最后,在ICDAR2015数据集上进行对比实验,结果表明,与其他模型相比,所提模型可以提升检测精度,证明了所提模型的有效性。 相似文献
3.
4.
对象建议算法(object proposals)是对象检测中的常用算法,用于快速定位物体区域。根据自然场景文本的特点,将对象建议算法应用到文本检测中,并与经典的最稳定极值区域算法相结合;然后,通过贝叶斯模型融合了笔画宽度特征、视觉散度特征和边缘梯度特征,并将文本和非文本区域的区分问题转换成一个二值标记问题,通过最小化能量函数寻找最佳标记;最后,通过均值漂移聚类寻找文本区域的中心生成文本行。经实验证明,本算法在常用的自然场景文本检测数据集上速度得到了提高,并且一定程度上解决了传统最稳定极值区域算法对光照敏感的问题,获得了较高的查全率。 相似文献
5.
针对在复杂的自然场景中中文本倾斜、模糊、光照等检测难题,提出一种基于卷积神经网络YOLOv3与最大极值稳定区域MSER的检测方法YOLOv3-M,并针对中文场景分别改善YOLOv3与MSER.通过YOLOv3算法对图像文本区域的矩形坐标进行回归预测,设计一个基于MSER的角度检测方法与之关联,实现倾斜文本行的检测.YO... 相似文献
6.
基于深度卷积网络的目标检测综述 总被引:1,自引:0,他引:1
在基于区域的卷积神经网络提出后,深度卷积网络开始在目标检测领域普及,更快的基于区域的卷积神经网络将整个目标检测过程合成在一个统一的深度网络框架上.随后YOLO和SSD等目标检测框架的提出进一步提升目标检测的效率.文中系统总结基于深度网络的目标检测方法,归为2类:基于候选窗口的目标检测框架和基于回归的目标检测框架.基于候选窗口的目标检测框架首先需要在输入的图像上产生很多的候选窗口,然后对这些候选窗口进行判别.这里的判别包括:对窗口包含物体的类别(包括背景)进行判断、对窗口的位置进行回归.基于回归的目标检测方法将图像目标检测看作是一个回归的过程.在此基础上,在PASCAL_VOC和COCO等主流数据库上对比目前两类目标检测框架中的主流方法,分析两类方法各自的优势.最后根据当前深度网络目标检测方法的发展趋势,对目标检测方法未来的研究热点做出合理预测. 相似文献
7.
银行故障单中故障的截图常存在与自然场景中,能够在该图中精确地进行文本检测,将可以提高文本识别的精确度,并提高案例库的搜索和主动运维能力.为了提高自然场景文本检测的效率,提出了一种基于深度学习的自然场景文本检测算法.算法首先提取出图像中的最大稳定极值区域作为候选字母,利用单链接层次聚类得到候选文本,对候选文本进行中值滤波,最后通过一个深度置信网络DBN来删除非文本候选.实验结果表明,基于DBN的方法能有效提高自然场景文本检测的准确率,比传统方法具有更好的结果. 相似文献
8.
基于深度学习的自然场景文本检测技术已成为计算机视觉和自然语言处理领域的重要研究方向,不仅具有广泛的应用前景,而且也为研究人员提供了一个探索神经网络模型和算法的新平台。首先,介绍自然场景文本检测技术的相关概念、研究背景和发展现状。接着,分析近年来基于深度学习的文本检测方法并将其分为基于检测框、基于分割、基于两者混合、其他4类,阐述4类经典和主流方法的基本思路和主要算法流程,归纳总结不同方法的使用机制、适用场景、优劣点及仿真实验结果和环境设置,明确不同方法之间的关联关系。然后,介绍自然场景文本检测的常用公共数据集和文本检测性能评估方法。最后,指出基于深度学习的自然场景文本检测技术目前所面临的主要挑战并对其未来发展方向进行展望。 相似文献
9.
场景文本检测是计算机视觉领域研究的主要方向.文章介绍了近几年深度学习技术在场景文本检测上的应用,包括对场景文本图像检测中存在问题的描述,对近些年场景文本检测算法的分类和分析,以及场景文本检测数据集的介绍.最后总结并展望了未来场景文本检测的发展趋势. 相似文献
10.
11.
自然场景文本检测对于机器理解场景等有着重要作用。近年来,随着深度学习的发展,自然场景文字检测方法也日新月异,取得了很好的检测效果。分析、总结了近年来基于深度学习的场景文字检测方法,将其归纳分类为基于回归、基于分割,以及两者混合三种类型,并对各类检测方法的优缺点进行了对比分析。介绍了场景文本检测性能指标及常用的公开数据集以及下载方式。对场景文字检测领域研究进行总结和展望,有望为深度学习场景文本检测方法提供新的研究方向。 相似文献
12.
目前,基于深度学习的自然场景文本检测在复杂的背景下取得很好的效果,但难以准确检测到小尺度文本.本文针对此问题提出了一种基于特征融合的深度神经网络,该网络将传统深度神经网络中的高层特征与低层特征相融合,构建一种高级语义的神经网络.特征融合网络利用网络高层的强语义信息来提高网络的整体性能,并通过多个输出层直接预测不同尺度的文本.在ICDAR2011和ICDAR2013数据集上的实验表明,本文的方法对于小尺度的文本,定位效果显著.同时,本文所提的方法在自然场景文本检测中具有较高的定位准确性和鲁棒性,F值在两个数据集上均达到0.83. 相似文献
13.
自然场景文本检测与识别研究对于从场景中获取信息有重要意义,而深度学习技术有助于提高文本检测与识别的能力.主要对基于深度学习的自然场景文本检测与识别方法和其研究进展进行整理分类、分析和总结.首先论述自然场景文本检测与识别的相关研究背景及主要技术研究路线;然后,根据自然场景文本信息处理的不同阶段,进一步介绍文本检测模型、文本识别模型和端到端的文本识别模型,并阐述和分析每类模型方法的基本思路和优缺点;另外,列举了常见公共标准数据集以及性能评估指标和方法,并对不同模型相关实验结果进行了对比分析;最后总结基于深度学习的自然场景文本检测与识别技术面临的挑战和发展趋势. 相似文献
14.
自然场景图像中的文本检测综述 总被引:3,自引:0,他引:3
本文对自然场景文本检测问题及其方法的研究进展进行了综述.首先,论述了自然场景文本的特点、自然场景文本检测技术的研究背景、现状以及主要技术路线.其次,从传统文本检测以及深度学习文本检测的视角出发,梳理、分析并比较了各类自然场景文本检测方法的优缺点,并介绍了端对端文本识别技术.再次,论述了自然场景文本检测技术所面临的挑战,探讨了相应的解决方案.最后,本文列举了测试基准数据集、评估方法,将最具代表性的自然场景文本检测方法的性能进行了比较,本文还展望了本领域的发展趋势. 相似文献
15.
基于并行深度卷积神经网络的图像美感分类 总被引:1,自引:0,他引:1
随着计算机和社交网络的飞速发展, 图像美感的自动评价产生了越来越大的需求并受到了广泛关注. 由于图像美感评价的主观性和复杂性, 传统的手工特征和局部特征方法难以全面表征图像的美感特点, 并准确量化或建模. 本文提出一种并行深度卷积神经网络的图像美感分类方法, 从同一图像的不同角度出发, 利用深度学习网络自动完成特征学习, 得到更为全面的图像美感特征描述; 然后利用支持向量机训练特征并建立分类器, 实现图像美感分类. 通过在两个主流的图像美感数据库上的实验显示, 本文方法与目前已有的其他算法对比, 获得了更好的分类准确率. 相似文献
16.
基于深度信念网络的文本分类算法 总被引:2,自引:0,他引:2
随着网络的迅猛发展,文本分类成为处理和组织大量文档数据的关键技术.目前已经有许多不同类型的神经网络应用于文本分类,并且取得良好的效果.但是,大部分模型仅采用文档的少量特征作为输入,没有考虑到足够的信息量;而当考虑到足够的特征时,又会发生维数灾难,导致模型难以训练或者训练时间大幅增加.利用深度信念网络从文本中抽取特征,并利用softmax回归分类器对抽取后的特征分类.深度信念网络不仅具有强大的学习能力,同时还能从高维的原始特征中抽取低维度高度可区分的低维特征,因此利用深度信念网络来对文本分类,不仅能够考虑到文档的足够的信息量,而且能够快速的训练.并且实验结果也表明利用深度信念网络实现文本分类的性能很好. 相似文献
17.
裂纹是威胁民用基础设施安全运行的重要因素之一,及时准确地检测出裂纹可以有效避免事故的发生.基于计算机视觉的自动裂纹检测方法具有操作简单、检测速度快、检测精度高的优点,被广泛应用于桥梁、道路监测、房屋建造、轨道交通等领域.总结了现有裂纹检测主要手段,详细介绍了三类基于深度卷积神经网络的裂纹检测方法,即基于分类的裂纹检测、... 相似文献
18.
当图像中文字区域形状复杂多变时,传统锚点方法难以精确定位文字,针对这一问题,提出一种具有双塔结构的文字分割检测算法.在网络中增加自下而上的特征增强路径以充分提炼语义信息,与上一级自上而下的结构形成双金字塔模型;接着新增一条路径缩短较底层与最顶层特征之间的距离,同时使用膨胀卷积,增大卷积核的感受野;在损失函数的设计中引入... 相似文献
19.
皮带撕裂是皮带机出现的最常见故障之一,直接影响皮带机的安全稳定运行.针对现有的方法大多仅对一种破损类型进行检测的情况,设计了一种基于双时间尺度的多分类深度卷积生成对抗网络的皮带撕裂检测方法.利用CCD相机捕获皮带表面图像,并经数据传输子系统将图像传送到决策子系统;在决策子系统的处理模块,通过去掉生成器的批量归一化操作,... 相似文献