共查询到18条相似文献,搜索用时 156 毫秒
1.
太赫兹(Terahertz, THz)波在无线通信、生物医学、无损检测、军用雷达等领域具有潜在的应用前景。研究THz慢光效应对THz通信和检测技术具有非常重要的实际意义。目前已报道的THz慢光效应研究还面临一系列问题。由于具有结构设计灵活和电磁特性可设计的特点,电磁诱导透明(Electromagnetically Induced Transparency,EIT)超材料为THz慢光效应提供了崭新的研究平台。介绍了基于EIT超材料的THz慢光效应的基本原理以及近年来的研究进展,并对THz慢光效应的发展趋势进行了分析和展望。 相似文献
2.
设计了一种在太赫兹波段下的四谐振环偶极子超表面结构,超表面的单元结构由一对反向的非对称开口谐振环(ASRR)及基底介质组成。在其谐振谱中观察到1个典型的类电磁诱导透明(EIT)现象。利用法诺(Fano)谐振模型对这种电磁诱导透明谐振谱进行拟合,良好的拟合结果揭示了不同谐振模式之间的耦合作用。此外,研究发现谐振的电磁特性对金属谐振环的开口间距非常敏感,开口间距的改变带来了谐振的频移和Q值的变化。该多谐振环偶极子超表面不仅为实现EIT效应提供了有效途径,而且有利于开发更多的太赫兹功能器件。 相似文献
3.
设计了一种太赫兹波段双频等离激元诱导透明(DBPIT)超材料。该超材料由位于中央的空竹(Diabolo)型结构单元 和对称分布于其两侧的不同尺寸的两个开口谐振环(SRR)组合而成,空竹结构单元和两 个SRR分别充当该体系的亮、暗 模式谐振器。数值仿真结果表明,超材料透射频谱具有明显的双透明窗特征,通过调节亮 模式的几何尺寸,可以实现对双透 明窗透射幅度的调控。基于经典的三谐振子模型(three-oscillator model)及表面等 离激元(surface plasmon theory)理论, 阐述了DBPIT效应的物理机制:亮模式分别与两个暗模式之间的近场强耦合。亮模式采用 具有磁场增强功能的空竹结构, 有助于提高暗模式的磁场响应,进而大幅度增强亮、暗模式之间的耦合,达到提高透明 窗透射幅度的目的。这项工作为设计 具有高度灵活性的多波段功能器件(如慢光器件、可调谐传感器和多波段选择性开关器 件)开辟了新的途径。 相似文献
4.
设计了一种由单杆型谐振器和两个长方形开口环型谐振器组成的超材料微结构。研究了柔性超材料结构的宽频带类电磁诱导透明(Electromagnetically Induced Transparency, EIT)效应及慢光效应,获得了最大透过率为86.96%、相对带宽为64.14%的透明窗口以及3.20 ps的慢光群延迟。当石墨烯的费米能级从0 eV增大到1 eV时,光透过率由86.96%降低到28.9%,调制深度为66.7%。此外,当微结构表面覆盖折射率为1.0~1.8、厚度为5 μm的分析物时,该微结构的折射率传感灵敏度为77.93 GHz/RIU。本文研究或可为在太赫兹(THz)波段实现主动调控宽频带类EIT效应以及高灵敏度折射率传感器件指引新的方向。 相似文献
5.
6.
基于石墨烯电导率的可调性,设计了T型石墨烯纳米超材料结构,实现对电磁诱导透明(EIT)效应的动态调谐。研究发现,当2个石墨烯条互相靠近时,由于二者间存在较强耦合,发生相消干涉,因此出现透明窗口。同时讨论了石墨烯条长度、缝宽、入射偏振角等几何参数对EIT效应的影响。研究结果表明,耦合强度随着缝宽的增加而减弱;随着入射偏振角的增加也呈现减弱趋势;随着石墨烯条长度的增加,透明窗口发生红移现象,且第一个下降峰强度明显增加。此外,当费米能级由0.3 eV增加到0.9 eV时,共振频率由24 THz蓝移至35 THz,且强度增强,证实了改变石墨烯的费米能级,能够调节透明窗口的位置。并且透明窗口附近有明显的群速度延迟(0.05 ps左右),即可以实现对光速的减慢。 相似文献
7.
8.
提出了一种基于C型超材料的太赫兹波段高灵敏度透射型生物传感器。利用电磁场软件CST2016对其传感器的特性进行研究。通过改变四个微纳金属结构的旋转角度、微纳金属结构的位置,对其传感器的Q值特性进行了分析,并进一步研究了微流通道的通道高度、覆盖层和基底的介电常数对其传感器灵敏度的影响。研究结果表明,当微纳金属结构旋转角度75°,上下金属结构间位置相对平移3μm,微流通道高度45μm,覆盖层和基底采用相对介电常数为2.25的聚乙烯材料时,设计的C型超材料生物传感器的灵敏度为0.0936 THz/RIU。该传感器在太赫兹波生物医学领域有着广阔的应用前景。 相似文献
9.
10.
11.
提出了一种基于石墨烯超材料的可调谐电磁诱导 透明(EIT)结构,该结构是由长条-半圆环形状的石墨烯层和 介质基底组成。通过频域有限差分法研究了该结构的特性,研究结果表明,由于石墨烯条和 石墨烯半圆环之间发生相互 作用,产生较弱的杂化,从而可以观察到EIT透明窗口。更重要的是,通过控制门电压,改 变石墨烯的费米能级,可以 在较宽的频率范围内实现透明窗口的动态调谐。通过调节石墨烯的费米能级,在透射峰附近 群延迟接近0.4ps。同时还研 究了石墨烯条和半圆环间的距离、圆环的半径、方位角等几何参数对EIT效应的影响,这些 因素的改变对EIT 效应产生 了不同的影响。本文设计的超材料结构可应用于调制器和慢光器件等,对光开关、光存储等 新型器件的设计有重要的指导意义。 相似文献
12.
为提高远红外超材料的品质因子Q和检测灵敏度,本文研究了一种用于金属远红外超材料的非对称针尖设计。以传统双开口方形谐振环为模型,通过理论模拟,研究了开口狭缝针尖角度变化对其电场分布、谐振频谱以及品质因子Q的影响。结果表明,非对称针尖增强了谐振环的表面电场局域性,减小了谐振峰的半峰宽,并使品质因子Q提高到传统谐振环(非针尖设计)的三倍以上。该研究结果为开发高灵敏远红外超材料传感器提供了新的思路,并为传统开口谐振环提出了一种简单实用的Q因子优化方法。 相似文献
13.
鉴于太赫兹辐射的特殊性,其难以与自然界中多数材料发生电磁相互作用,导致太赫兹功能器件匮乏.人工超材料通过人工设计结构单元的周期排列组合,可实现太赫兹波段电磁响应的调控.本文设计一种由二氧化硅衬底上的单层金属方形谐振环结构构成的太赫兹带阻人工超材料,具有窄带宽、深带阻特性、偏振不敏感特性,通过近场电场和表面电流分析,带阻... 相似文献
14.
设计了一种超材料三维模型,由闭合方环和4个开口谐振方环通过正、反向双开口方环与闭合方环相互耦合来组成,在太赫兹范围内具有多波段电磁诱导透明(EIT)效应。该结构分别实现了在1.21、1.46、1.61、1.98 THz这四波段的电磁诱导透明现象,并且谐振强度均达到0.9左右。通过将结构单元进行拆分并相互对比分析,研究了该超材料结构产生多波段EIT效应的物理机理,并重点分析了开口大小、闭合方环尺寸对EIT强度与带宽的影响。通过对三维立体结构仿真分析可知,所设计的超材料不仅在多个波段获得了较高的折射率灵敏度,还具有高强度、多频点的慢光效应。因此,其在折射率传感与光缓存器件等领域,具有良好的应用前景。 相似文献
15.
The influence of air gaps on the response of transmission for a transverse-electric mode parallel-plate waveguide (TE-PPWG) with a single cavity and double cavities has been studied experimentally. As ... 相似文献
16.
提出了一种基于金属环结构的太赫兹超窄带吸收器,其结构单元为典型的金属-介质-金属结构,顶层金属图案由封闭金属环和四开口金属环组成,底层为连续金属板。对该吸收器的窄带吸收原理和吸收峰频率处吸收器结构的表面电流分布进行了研究。结果表明:该吸收器在1.7682THz处存在狭窄的吸收峰,吸收率为99.8%,相对于该谐振频率的半高全宽为0.51%,而且对x和y极化入射波具有极化不敏感。该吸收器具有结构简单、易于加工的优点,在生物传感、窄带热辐射和光电探测等领域有着重要的潜在应用价值。 相似文献
17.
提出了一种应用于宽带系统和窄带系统的双频微带滤波器,其宽带通带和窄带通带分别通过三阶交
指型滤波结构和双模微带谐振器来控制。两部分的相互加载效应可进一步增强源-负载耦合,提高通带的选择性。
在50赘馈线上加载两个不同尺寸的反向四分之一波长谐振器(QWR)耦合短路枝节,可以在通带之间及上下边缘处
产生多个传输零点,提高了通带选择性和隔离度。最终,本文设计了一个工作于3.2GHz(宽带)和5.8GHz(WLAN)
的双频滤波器用以验证上述设计方法,测试和仿真结果吻合良好。 相似文献
18.
通过在金属-电介质-金属(MIM)波导单侧引入正交的双谐振腔结构,得到了实现等离激元诱导透明效应的结构模型。采用有限元法计算得到了该结构的透射谱曲线。仿真结果显示,波导系统的谐振波长随着正交双谐振腔有效谐振长度(Leff)的增加而红移,且当正交矩形腔为对称的T形结构时,会出现传输禁带。在此基础上讨论了当正交矩形腔为非对称结构时,在传输禁带处产生类电磁诱导透明峰的物理条件,以及该透射峰的变换规律。类电磁诱导效应可改变光的群速度,从而产生慢光效应。研究结果表明,含正交矩形腔MIM的波导结构可以得到0.086ps的最大光时延,为光路延时以及光数据存储提供了理论参考。 相似文献