首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Permeation of hydrogen isotope through a high-temperature alloy used as heat exchanger and steam reformer pipes is an important problem in the hydrogen production system connected to be a high-temperature engineering test reactor (HTTR). An experiment of hydrogen (H2) and deuterium (D2) permeation was performed to obtain permeability of H2 and D2 of Hastelloy XR, which is adopted as heat transfer pipe of an intermediate heat exchanger of the HTTR. Permeability of H2 and D2 of Hastelloy XR were obtained as follows. The activation energy E0 and pre-exponential factor F0 of the permeability of H2 were E0=67.2±1.2 kJ mol−1 and F0=(1.0±0.2)×10−8 m3(STP) m−1 s−1 Pa−0.5, respectively, in the pipe temperature ranging from 843 K (570 °C) to 1093 K (820 °C). E0 and F0 of the permeability of D2 were respectively E0=76.6±0.5 kJ mol−1 and F0=(2.5±0.3)×10−8 m3(STP) m−1 s−1 Pa−0.5 in the pipe temperature ranging from 943 K (670 °C) to 1093 K (820 °C).  相似文献   

2.
The effects on N2O and N2 gas on the radiation degradation yield of aqueous kappa (κ-) carrageenan were investigated. The Gd of solution saturated with N2O solution was expectedly much higher than in air (1.7 and 1.2 × 10−7 mol J−1). On the other hand, a lower Gd of 1.1 × 10−7 mol J−1 was obtained from κ-carrageenan solution saturated with N2.The rate constant of reaction of OH radicals with sonicated and irradiated κ-carrageenan were determined using e-beam pulse radiolysis. The rate constant of OH interaction with sonicated κ-carrageenan decreased with decreasing molecular weight. On the other hand, the OH interaction with irradiated κ-carrageenan decreased but did not vary significantly with decreasing molecular weight. Metal ion (Na+) induced conformational transition into helical form decreased the rate constant of OH reaction with κ-carrageenan. Likewise, the Gd in aqueous form was affected by the conformational state of κ-carrageenan. The helical conformation gave a lower Gd (7 × 10−8 mol J−1) than the coiled conformation (Gd = 1.2 × 10−7 mol J−1).  相似文献   

3.
The behaviour of protective oxide layers on P122 steel and its welds and of ODS steel in liquid Pb44.5Bi55.5 (LBE) is examined under conditions of changing temperatures and oxygen concentrations. P122 (12Cr) and its welded joints are exposed to LBE at 550 °C for 4000 h with oxygen concentrations of 10−6 and 10−8 wt% (p(O2) = 8.1 × 10−23 bar and 5.2 × 10−27 bar) which change every 800 h. It is found that like in case of constant oxygen concentration of 10−6 wt% a protective spinel layer (Fe(Fe1−xCrx)2O4) was maintained on P122 and also on its welded joint. Two experiments with exposure times of 4800 h are conducted on ODS steel, both with temperatures changing from 550 to 650 °C and back every 800 h, one experiment with 10−6 the other with 10−8 wt% oxygen in LBE. Both experiments show strong local dissolution attack after 4800 h which is in agreement with the behaviour of ODS in LBE at a constant temperature of 650 °C. However, dissolution attack is less in LBE with 10−8 wt% oxygen (p(O2) = 3.0 × 10−25 bar).  相似文献   

4.
Commercial O-face (0 0 0 1) ZnO single crystals were implanted with 200 keV Ar ions. The ion fluences applied cover a wide range from 5 × 1011 to 7 × 1016 cm−2. The implantation and the subsequent damage analysis by Rutherford backscattering spectrometry (RBS) in channelling geometry were performed in a special target chamber at 15 K without changing the target temperature of the sample. To analyse the measured channelling spectra the computer code DICADA was used to calculate the relative concentration of displaced lattice atoms.Four stages of the damage evolution can be identified. At low ion fluences up to about 2 × 1013 cm−2 the defect concentration increases nearly linearly with rising fluence (stage I). There are strong indications that only point defects are produced, the absolute concentration of which is reasonably given by SRIM calculations using displacement energies of Ed(Zn) = 65 eV and Ed(O) = 50 eV. In a second stage the defect concentration remains almost constant at a value of about 0.02, which can be interpreted by a balance between production and recombination of point defects. For ion fluences around 5 × 1015 cm−2 a second significant increase of the defect concentration is observed (stage III). Within stage IV at fluences above 1016 cm−2 the defect concentration tends again to saturate at a level of about 0.5 which is well below amorphisation. Within stages III and IV the damage formation is strongly governed by the implanted ions and it is appropriate to conclude that the damage consists of a mixture of point defects and dislocation loops.  相似文献   

5.
We have recently synthesized “stuffed” (i.e., excess Lu) Lu2(Ti2−xLux)O7−x/2 (x = 0, 0.4 and 0.67) compounds using conventional ceramic processing. X-ray diffraction measurements indicate that stuffing more Lu3+ cations into the oxide structure leads eventually to an order-to-disorder (O-D) transition, from an ordered pyrochlore to a disordered fluorite crystal structure. At the maximum deviation in stoichiometry (x = 0.67), the Lu3+ and Ti4+ ions become completely randomized on the cation sublattices, and the oxygen “vacancies” are randomized on the anion sublattice. Samples were irradiated with 400 keV Ne2+ ions to fluences ranging from 1 × 1015 to 1 × 1016 ions/cm2 at cryogenic temperatures (∼77 K). Ion irradiation effects in these samples were examined by using grazing incident X-ray diffraction. The results show that the ion irradiation tolerance increases with disordering extent in the non-stoichiometric Lu2(Ti2−xLux)O7−x/2.  相似文献   

6.
Experimental data obtained during long term environmental tests of a nuclear waste alkali-borosilicate glass K-26 in an experimental near-surface repository are examined. Average leaching rates of the radionuclides were calculated: the leach rates gradually diminished from 9.4 × 10−7 g cm−2 day−1 over the first year to 2.2 × 10−7 g cm−2 day−1 over 16 years of tests. Radionuclide losses obey a square root time dependence indicating a diffusion-controlled release mechanism. The main parameters, which control the corrosion of waste glass K-26 in the near-surface repository, are the effective diffusion coefficient of radiocaesium DCs and the rate of glass hydrolysis rh. Analysis of 16 years experimental data gave DCs = 4.5 × 10−12 cm2 day−1 and rh = 0.1 μm years−1. Diffusion is predicted to be dominant for 16.4 years after which diffusion and hydrolytic dissolution are expected to be similarly important. This mixed stage is predicted continue for 262 years after which hydrolytic dissolution will be the dominant mechanism.  相似文献   

7.
Refractive index profiles of ion-implanted Lithium Niobate waveguides are investigated. Z+ and z congruent Lithium Niobate samples have been implanted with C3+ ions at a fluence of 4 × 1014 ions/cm2. Dark m-lines measurements have been performed on ordinary (no) and extraordinary (ne) indexes for three different wavelengths (532 nm, 632.8 nm, 818 nm) before and after the annealing process. A reconstruction of refractive index profiles by Reflectivity Calculation Method (RCM) is presented and commented. The literature data for nuclear damage regime have been collected and critically examined. no and ne curves as function of the density of energy released in nuclear collisions, Ed, describing the effects of ion implantation on LN refractive indexes has been obtained on the basis of literature data. no depth profile, predicted according to no(Ed) curve, is in good agreement with the RCM reconstructed one. In the case of ne, a satisfactory agreement has been reached only slightly modifying the ne(Ed) curve and considering an alternative RCM profile structure.  相似文献   

8.
The thermal conductivities of (U0.68Pu0.30Am0.02)O2.00−x solid solutions (x = 0.00-0.08) were studied at temperatures from 900 to 1773 K. The thermal conductivities were obtained from the thermal diffusivities measured by the laser flash method. The thermal conductivities obtained experimentally up to about 1400 K could be expressed by a classical phonon transport model, λ = (A + BT)−1, A(x) = 3.31 × x + 9.92 × 10−3 (mK/W) and B(x) = (−6.68 × x + 2.46) × 10−4 (m/W). The experimental A values showed a good agreement with theoretical predictions, but the experimental B values showed not so good agreement with the theoretical ones in the low O/M ratio region. From the comparison of A and B values obtained in this study with the ones of (U,Pu)O2−x obtained by Duriez et al. [C. Duriez, J.P. Alessandri, T. Gervais, Y. Philipponneau, J. Nucl. Mater. 277 (2000) 143], the addition of Am into (U, Pu)O2−x gave no significant effect on the O/M dependency of A and B values.  相似文献   

9.
This paper deals with the study of oxidation kinetics and the identification of oxygen diffusion coefficients of low-tin Zy-4 alloy at intermediate (973 K ? T ? 1123 K) and high temperatures (T ? 1373 K). Two different cases were considered: dissolution of a pre-existing oxide layer in the temperature range 973 K ? T ? 1123 K and oxidation at T ? 1373 K. The results are the following ones: in the temperature range 973-1123 K, the oxygen diffusion coefficient in αZr phase can be expressed as Dα = 6.798 exp(−217.99 kJ/RT) cm2/s. In the temperature range 1373-1523 K, the oxygen diffusion coefficients in αZr, βZr and ZrO2, were determined using an ‘inverse identification method’ from experimental high temperature oxidation data (i.e., ZrO2, and αZr(O) layer thickness measurements); they can be expressed as follows: Dα = 1.543 exp(−201.55 kJ/ RT) cm2/s, Dβ = 0.0068 exp(−102.62 kJ/ RT) cm2/s and DZrO2=0.115exp(143.64kJ/RT)cm2/s. Finally an oxygen diffusion coefficient in αZr in the temperature range 973 K ? T ? 1523 K was determined, by combining the whole set of results: Dα = 4.604exp(−214.44 kJ/RT) cm2/s. In order to check these calculated diffusion coefficients, oxygen concentration profiles were determined by Electron Probe MicroAnalysis (EPMA) in pre-oxidized low-tin Zy4 alloys annealed under vacuum at three different temperatures 973, 1073 and 1123 K for different times, and compared to the calculated profiles. At last, in the framework of this study, it appeared also necessary to reassess the Zr-O binary phase diagram in order to take into account the existence of a composition range in the two zirconia phases, αZrO2 and βZrO2.  相似文献   

10.
Enthalpy increment measurements on La2Te3O9(s) and La2Te4O11(s) were carried out using a Calvet micro-calorimeter. The enthalpy values were analyzed using the non-linear curve fitting method. The dependence of enthalpy increments with temperature was given as: (T) − (298.15 K) (J mol−1) = 360.70T + 0.00409T2 + 133.568 × 105/T − 149 923 (373 ? T (K) ? 936) for La2Te3O9 and (T) − (298.15 K) (J mol−1) = 331.927T + 0.0549T2 + 29.3623 × 105/T − 114 587 (373 ? T (K) ? 936) for La2Te4O11.  相似文献   

11.
The thermal conductivities of (U,Pu,Np)O2 solid solutions were studied at temperatures from 900 to 1770 K. Thermal conductivities were obtained from the thermal diffusivity measured by the laser flash method. The thermal conductivities obtained below 1400 K were analyzed with the data of (U,Pu,Am)O2 obtained previously, assuming that the B-value was constant, and could be expressed by a classical phonon transport model, λ = (A + BT)−1, A(z1, z2) = 3.583 × 10−1 × z1 + 6.317 × 10−2 × z2 + 1.595 × 10−2 (m K/W) and B = 2.493 × 10−4 (m/W), where z1 and z2 are the contents of Am- and Np-oxides. It was found that the A-values increased linearly with increasing Np- and Am-oxide contents slightly, and the effect of Np-oxide content on A-values was smaller than that of Am-oxide content. The results obtained from the theoretical calculation based on the classical phonon transport model showed good agreement with the experimental results.  相似文献   

12.
Silicon oxynitride (SixOyNz) layers were synthesized by implanting 16O2+ and 14N2+ 30 keV ions in 1:1 ratio with fluences ranging from 5 × 1016 to 1 × 1018 ions cm−2 into single crystal silicon at room temperature. Rapid thermal annealing (RTA) of the samples was carried out at different temperatures in nitrogen ambient for 5 min. The FTIR studies show that the structures of ion-beam synthesized oxynitride layers are strongly dependent on total ion-fluence and annealing temperature. It is found that the structures formed at lower ion fluences (∼1 × 1017 ions cm−2) are homogenous oxygen-rich silicon oxynitride. However, at higher fluence levels (∼1 × 1018 ions cm−2) formation of homogenous nitrogen rich silicon oxynitride is observed due to ion-beam induced surface sputtering effects. The Micro-Raman studies on 1173 K annealed samples show formation of partially amorphous oxygen and nitrogen rich silicon oxynitride structures with crystalline silicon beneath it for lower and higher ion fluences, respectively. The Ellipsometry studies on 1173 K annealed samples show an increase in the thickness of silicon oxynitride layer with increasing ion fluence. The refractive index of the ion-beam synthesized layers is found to be in the range 1.54-1.96.  相似文献   

13.
A detailed investigation of the surface morphology of the pristine and swift heavy ion (SHI) irradiated La0.7Sr0.3MnO3 (LSMO) thin film using atomic force microscope (AFM) is presented. Highly c-axis oriented LSMO thin films were grown on LaAlO3 (1 0 0) (LAO) substrates by the pulsed laser deposition (PLD) technique. The films were annealed at 800 °C for 12 h in air (pristine films) and subsequently, irradiated with SHI of oxygen and silver. The incident fluence was varied from 1 × 1012 to 1 × 1014 ions/cm2 and 1 × 1011 to 1 × 1012 ions/cm2 for oxygen and silver ions, respectively. X-ray diffraction (XRD) studies reveal that the irradiated films are strained. From the AFM images, various details pertaining to the surface morphology such as rms roughness (σ), the surface rms roughness averaged over an infinite large image (σ), fractal dimension (DF) and the lateral coherence length (ξ) were estimated using the length dependent variance measurements. In case of irradiated films, the surface morphology shows drastic modifications, which is dependent on the nature of ions and the incident fluence. However, the surface is found to remain self-affine in each case. In case of oxygen ion irradiated films both, σ and DF are observed to increase with fluence up to a dose value of 1 × 1013 ions/cm2. With further increase in dose value both σ and DF decreases. In case of silver ion irradiated films, σ and DF decrease with increase in fluence value in the range studied.  相似文献   

14.
Diffusion of silver in 6H-SiC and polycrystalline CVD-SiC was investigated using α-particle channeling spectroscopy and electron microscopy. Fluences of 2 × 1016 cm−2 of 109Ag+ were implanted with an energy of 360 keV at room temperature, at 350 °C and 600 °C, producing an atomic density of approximately 2% at the projected range of about 110 nm. The broadening of the implantation profile and the loss of silver through the front surface during vacuum annealing at temperatures up to 1600 °C was determined. Fairly strong silver diffusion was observed after an initial 10 h annealing period at 1300 °C in both polycrystalline and single crystalline SiC, which is mainly due to implant induced radiation damage. After further annealing at this temperature no additional diffusion took place in the 6H-SiC samples, while it was considerably reduced in the CVD-SiC. The latter was obviously due to grain boundary diffusion and could be described by the Fick diffusion equation. Isochronal annealing of CVD-SiC up to 1400 °C exhibited an Arrhenius type temperature dependence, from which a frequency factor Do ∼ 4 × 10−12 m2 s−1 and an activation energy Ea ∼ 4 × 10−19 J could be extracted. Annealing of 6H-SiC above 1400 °C shifted the silver profile without any broadening towards the surface, where most of the silver was released at 1600 °C. Electron microscopy revealed that this process was accompanied by significant re-structuring of the surface region. An upper limit of D < 10−21 m2 s−1 was estimated for 6H-SiC at 1300 °C.  相似文献   

15.
Depth profiles of deuterium up to a depth of 10 μm have been measured using the D(3He,p)4He nuclear reaction in a resonance-like technique after exposure of sintered boron carbide, B4C, at elevated temperatures to a low energy (≈200 eV/D) and high ion flux (≈1021 m−2 s−1) D plasma. The proton yield was measured as a function of incident 3He energy and the D depth profile was obtained by deconvolution of the measured proton yields using the program SIMNRA. D atoms diffuse into the bulk at temperatures above 553 K, and accumulate up to a maximum concentration of about 0.2 at.%. At high fluences (?1024 D/m2), the accumulation in the bulk plays a major role in the D retention. With increasing exposure temperature, the amount of D retained in B4C increases and exceeds a value of 2 × 1021 D/m2 at 923 K. The deuterium diffusivity in the sintered boron carbide is estimated to be D = 2.6 × 10−6exp{−(107 ± 10) kJ mol−1/RT} m2 s−1.  相似文献   

16.
采用电化学阻抗谱(EIS)、场发射扫描电子显微镜(SEM)、Auger扫描能谱仪(AES)以及容抗测试技术(M-S曲线),研究了316LN/316L不锈钢焊接接头在模拟压水堆一回路高温高压水中形成的钝化膜的耐蚀性能和半导体特性。结果表明,焊缝区、热影响区和母材区形成的钝化膜的耐蚀性能不同,热影响区钝化膜开路电位及电化学阻抗等均低于其他区域,说明热影响区钝化膜的耐蚀性能最差,这主要与钝化膜的致密程度、厚度及Cr氧化物的含量有关。M-S曲线表明,母材区钝化膜平带电位为-0.7V,较其他区域(-0.4V)负移,表明有BO-3等阴离子在钝化膜表面吸附,加之具有较低的施主和受主浓度,可排斥侵蚀离子的腐蚀,使之较其他区域有更强的耐蚀性能。  相似文献   

17.
Polyethyleneterephthalate (PET) has been modified by 100 keV Ni+ and N+ ions using metal ion from volatile compound (MIVOC) ion source to fluence ranging from 1 × 1014 to 1 × 1016 ions/cm2. The increasing application of polymeric material in technological and scientific field has motivated the use of surface treatment to modify the physical and chemical properties of polymer surfaces. When a material is exposed to ionization radiation, it suffers damage leading to surface activation depending on the type. The surface morphology was observed by atomic force microscopy (AFM). That show the roughness increases with fluence in both the cases. The Ni particles as precipitation in PET were observed by cross-section transmission electron microscopy (XTEM). The optical band gap (Eg) deduced from absorption spectra; was calculated by Tau’c relation. Raman spectroscopy shows quantitatively the chemical nature at the damage caused by the Ni+ and N+ bombardment. The ration of ID/IG shows graphite-like structure is formed on the surface. A layer of hydrogenated amorphous carbon is formed on the surface, which has confirmed by XPS results also.  相似文献   

18.
An E × B probe (a modified Wien filter) is constructed to function both as a mass spectrometer and ion implanter. The device, given the acronym EXBII selects negative hydrogen ions (H) from a premixed 10% argon-seeded hydrogen sheet plasma. With a vacuum background of 1.0 × 10−6 Torr, H extraction ensues at a total gas feed of 1.8 mTorr, 0.5 A plasma discharge. The EXBII is positioned 3 cm distance from the sheet core as this is the region densely populated by cold electrons (Te ∼ 2 eV, Ne ∼ 3.4 × 1011 cm−3) best suited for H formation. The extracted H ions of flux density ∼0.26 A/m2 are segregated, accelerated to hyperthermal range (<100 eV) and subsequently deposited into a palladium-coated 1.1 × 1.1 cm2, n-type Si (1 0 0) substrate held at the rear end of the EXBII, placed in lieu of its Faraday cup. The palladium membrane plays the role of a catalyst initiating the reaction between Si atoms and H ions simultaneously capping the sample from oxidation and other undesirable adsorbents. AFM and FTIR characterization tests confirm the formation of SiH2. Absorbance peaks between 900-970 cm−1 (bending modes) and 2050-2260 cm−1 (stretching modes) are observed in the FTIR spectra of the processed samples. It is found that varying hydrogen exposure time results in the shifting of wavenumbers which may be interpreted as changes in the frequencies of vibration for SiH2. These are manifestations of chemical changes accompanying alterations in the force constant of the molecule. The sample with longer exposure time exhibits an additional peak at 2036 cm−1 which are hydrides of nano-crystalline silicon.  相似文献   

19.
We report the first investigation of the frequency dependent effect of 50 MeV Li3+ ion irradiation on the series resistance and interface state density determined from capacitance-voltage (C-V) and conductance-voltage (G-V) characteristics in HfO2 based MOS capacitors prepared by rf-sputtering. The samples were irradiated by 50 MeV Li3+ ions at room temperature. The measured capacitance and conductance were corrected for series resistance. The series resistance was estimated at various frequencies from 1 KHz to 1 MHz before and after irradiation. It was observed that the series resistance decreases from 6344.5 to 322 Ω as a function of frequency before irradiation and 8954-134 Ω after irradiation. The interface state density Dit decreases from 1.12 × 1012 eV−1 cm−2 before irradiation to 3.67 × 1011 eV−1 cm−2 after ion irradiation and further decreases with increasing frequency.  相似文献   

20.
Matter losses of polyethylene terephthalate (PET, Mylar) films induced by 1600 keV deuteron beams have been investigated in situ simultaneously by nuclear reaction analysis (NRA), deuteron forward elastic scattering (DFES) and hydrogen elastic recoil detection (HERD) in the fluence range from 1 × 1014 to 9 × 1016 cm−2. Volatile degradation products escape from the polymeric film, mostly as hydrogen-, oxygen- and carbon-containing molecules. Appropriate experimental conditions for observing the composition and thickness changes during irradiation are determined. 16O(d,p0)17O, 16O(d,p1)17O and 12C(d,p0)13C nuclear reactions were used to monitor the oxygen and carbon content as a function of deuteron fluence. Hydrogen release was determined simultaneously by H(d,d)H DFES and H(d,H)d HERD. Comparisons between NRA, DFES and HERD measurements show that the polymer carbonizes at high fluences because most of the oxygen and hydrogen depletion has already occured below a fluence of 3 × 1016 cm−2. Release curves for each element are determined. Experimental results are consistent with the bulk molecular recombination (BMR) model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号