首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Different ODS EUROFER steels reinforced with Y2O3 and MgAl2O4 were elaborated by mechanical milling and hot isostatic pressing. Good compromise between strength and ductility could be obtained but the impact properties remain low (especially for the Y2O3 ODS steel). The materials were structurally characterized at each step of the elaboration. During milling, the martensite laths of the steel are transformed into nano-metric ferritic grains and the Y2O3 oxides dissolve (but not the MgAl2O4 spinels). After the HIP, all the ODS steels remain ferritic with micrometric grains, surrounded by nano-metric grains for the Y2O3 ODS steels. The mechanisms in the Y2O3 ODS steels are complex: the Y2O3 oxides re-precipitate as nano-Y2O3 particles that impede a complete austenitization during the HIP. The quenchability of the ODS steels is modified by the milling process, the oxide nature and the oxide content. Eventually, the advantages and drawbacks of each oxide type are discussed.  相似文献   

2.
In this work, we have studied the impact of Y2O3 on the kinetics of oxidative dissolution of UO2 and the consumption of H2O2. The second order kinetics of catalytic consumption of H2O2 on Y2O3 was investigated in aqueous Y2O3 powder suspensions by varying the solid surface area to solution volume ratio. The resulting second order rate constant is 10−8 m s−1, which is of the same magnitude as for the reaction between H2O2 and UO2. Powder experiments with mixtures of UO2 and Y2O3 show that Y2O3 has no effect on the oxidative dissolution of UO2, whereas the consumption of H2O2 seems to be slightly slower in the presence of Y2O3 and H2 respectively. UO2 pellets with solid inclusions of Y2O3 show a decrease in oxidative dissolution by a factor of 3.3 and 5.3 under inert and hydrogen atmosphere, respectively. The rate of H2O2 consumption is similar for all cases and is well in line with kinetic data from powder experiments. The effects of H2 and Y2O3 on the oxidative dissolution of UO2 under gamma irradiation are similar to those found in experiments with H2O2. No significant difference in dissolution between inert and reducing atmosphere can be observed for pure UO2.  相似文献   

3.
Eu-activated Y2O3 phosphors were prepared by combustion synthesis and also by precipitation techniques. Photoluminescence and X-ray excited luminescence of prepared Y2O3:Eu phosphor, under two different techniques were compared and reported in this paper. Y2O3:Eu3+ phosphor were prepared by precipitation technique followed by annealing at 900 °C. It gives cubic nature of the particle that may be more favourable for high lumen output. X-ray excited luminescence of Y2O3:Eu3+ phosphors also reported in this paper.  相似文献   

4.
Atomistic simulations have been employed to study the effect of BO2 (fluorite) incorporation into the bixbyite oxide Y2O3. The energetically preferred defect mechanism and the associated lattice parameter changes that occur from BO2 doping have been predicted. The addition of Group IV elements into Y2O3 can follow three different mechanisms. The energetically favourable method is through a mediated reaction for ZrO2 and HfO2 while for TiO2 and CeO2, reducing B4+ to B3+ provides the lowest energy reaction. ZrO2 and HfO2 doping results in the lowest volume changes.  相似文献   

5.
A laser process is presented that has been specially developed for joining oxide ceramics such as zirconium oxide (ZrO2) and aluminium oxide (Al2O3). It details, by way of example, the design of the laser process applied for to producing both Al2O3-Al2O3 and ZrO2-ZrO2 joints using siliceous glasses as fillers.The heat source used was a continuous wave diode laser with a wavelength range of 808-1010 nm. Glasses of the SiO2-Al2O3-B2O3-MeO system were developed as high-temperature resistant brazing fillers whose expansion coefficients, in particular, were optimally adapted to those of the ceramics to be joined. Specially designed measuring devices help to determine both the temperature-dependent emission coefficients and the synchronously determined proportions of reflection and transmission.The glass-ceramic joints produced are free from gas inclusions and macroscopic defects and exhibit a homogenous structure. The average strength values achieved were 158 MPa for the Al2O3 system and 190 MPa for the ZrO2 system, respectively.  相似文献   

6.
Diffuse reflectance measurements were made over the wavenumber range of 4000-20,000 cm−1 at room temperature on monoclinic and stabilised ZrO2, together with Y2Ti2O7 having the pyrochlore structure, all of which were doped with U and sintered in various atmospheres. X-ray photoelectron spectroscopy measurements were also carried out on selected samples. In monoclinic and stabilised zirconia, U exhibited valence states of +4 and/or +5, depending on the sintering atmosphere and the presence of appropriate charge compensators. Using both diffuse reflectance and X-ray photoelectron spectroscopy, U was also observed as mainly U4+ and/or U5+ in U-doped Y2Ti2O7 sintered at 1400 °C in air or Ar, although a small amount of U6+ also appeared to be present in some U-doped Y2Ti2O7 samples heated in air.  相似文献   

7.
The solubility product of Y2O3 in ferrite and the diffusion coefficient of yttrium in ferrite have been obtained by fitting a model based on the classical nucleation-growth-coarsening theory of precipitation, as adapted to an anisothermal heat treatment, to experimental small angle neutron scattering results of Y2O3 precipitate size distributions in a mechanically alloyed and consolidated Fe-15 at.%Cr-0.13 at.%Y-0.18 at.%O ferritic alloy. This precipitation model is coupled to a dispersed barrier model of structural hardening to predict the yield strength of the alloys as a function of heat treatment. The resulting model and thermodynamic/kinetic properties are then applied to better understand how the precipitation kinetics impact the yield stress in various anisothermal heat treatments, as compared to an isothermal heat treatment. The modeling results clearly indicate that the anisothermal heat treatments can be tailored to establish a higher density and a smaller size distribution of Y2O3 precipitates, which also increase the yield stress.  相似文献   

8.
W and W alloys are currently considered promising candidates for plasma facing components in future fusion reactors but most of the information on their mechanical properties at elevated temperature was obtained in the 1960s and 1970s. In this investigation, the strength and toughness of novel Y2O3-doped W-Ti alloys manufactured by powder metallurgy were measured from 25 °C up to 1000 °C in laboratory air and the corresponding deformation and failure micromechanisms were ascertained from analyses of the fracture surfaces. Although the materials were fairly brittle at ambient temperature, the strength and toughness increased with temperature and Ti content up to 600 °C. Beyond this temperature, oxidation impaired the mechanical properties but the presence of Y2O3 enhanced the strength and toughness retention up to 800 °C.  相似文献   

9.
In a deep repository for spent nuclear fuel, U(VI)(aq) released upon dissolution of the fuel matrix could, in reducing parts of the system, be converted to U(IV) species which might coalesce and form nanometer-sized UO2 particles. This type of particles is expected to have different properties compared to bulk UO2(s). Hence, their properties, in particular the capacity for oxidant consumption, must be investigated in order to assess the effects of formation of such particles in a deep repository. In this work, methods for radiation chemical synthesis of nanometer-sized UO2 particles, by electron- and γ-irradiation of U(VI) solutions, are presented. Electron-irradiation proved to be the most efficient method, showing high conversions of U(VI) and yielding small particles with a narrow size distribution (22-35 nm). Stable colloidal suspensions were obtained at low pH and ionic strength (pH 3, I = 0.03). Furthermore, the reactivity of the produced UO2 particles towards H2O2 is investigated. The U(IV) fraction in the produced particles was found to be ∼20% of the total uranium content, and the results show that the UO2 nanoparticles are significantly more reactive than micrometer-sized UO2 when it comes to H2O2 consumption, the major part of the H2O2 being catalytically decomposed on the particle surface.  相似文献   

10.
A new chlorination method using ZrCl4 in a molten salt bath has been investigated for the pyrometallurgical reprocessing of nuclear fuels. ZrCl4 has a high reactivity with oxygen but is not corrosive to refractory metals such as steel. Rare earth oxides (La2O3, CeO2, Nd2O3 and Y2O3) and actinide oxides (UO2 and PuO2) were allowed to react with ZrCl4 in a LiCl-KCl eutectic salt at 773 K to give a metal chloride solution and a precipitate of ZrO2. An addition of zirconium metal as a reductant was effective in chlorinating the dioxides. When the oxides were in powder form, the reaction was observed to progress rapidly. Cyclic voltammetry provided a convenient way of establishing when the reaction was completed. It was demonstrated that the ZrCl4 chlorination method, free from corrosive gas, was very simple and useful.  相似文献   

11.
The results of present paper have shown that sputtering of yttrium iron garnet (Y3Fe5O12) under swift heavy ions in the electronic energy loss regime is non-stoichiometric. Here we are presenting additional experimental results for gadolinium gallium garnet (Gd3Ga5O12) as target. The irradiations were performed with different ions (50Cr (589 MeV), 86Kr (195 MeV) and 181Ta (400 MeV)) impinging perpendicularly to the surface. As earlier, the sputtering yield was determined by collecting the emitted gadolinium and gallium atoms on a thin aluminium foil, placed upstream above the target and analyzing the Al catcher by Rutherford backscattering. Also for Gd3Ga5O12, the emission of Gd and Ga is non-stoichiometric. Sputtering appears above a critical electronic stopping power of Sth = 11.6 ± 1.5 keV/nm, which is larger than the threshold for track formation, in agreement with other amorphisable materials. In addition, the angular distribution of the sputtered species was measured for Y3Fe5O12 and Gd3Ga5O12 using 200 MeV Au ions impinging the surface at 20° relatively to the surface. For the two garnets the ratio of Y/Fe (and Gd/Ga) varies with the angle of emitted species and the stoichiometry seems to be preserved only for an emission perpendicular to the surface.  相似文献   

12.
A potentiometric sensor for measuring oxygen activity in LBE has been developed since 2000 until today at ‘Institut Quimic de Sarria’ electrochemistry laboratories. This sensor is based on In/In2O3 reference electrode. The last experiments performed with this sensor have been directed to characterise the sensor. For this purpose, the following experiments in stagnant conditions have been performed: effect of the operating temperature from 300 to 500 °C, different covering gases (N2 + 5% H2, Ar 99.999%, and N2 + 10 mg/L O2) and comparison of different solid electrolytes (ZrO2/Y2O3 and ZrO2/MgO). Long-term experiments have also been performed to the see the stability of the signal with time.  相似文献   

13.
Solid-state chemical investigations have established that in the compositional range UO2-UO2.67-ThO3 of the U-Th-O ternary system, the following single-phase domains exist: U3O8, which does not dissolve any ThO2 in the solid state; an ordered M4O9 phase on the section between U4O9 and U2Th2O9, below ≈ 1150 °C; and a phase with fluorite structure which occupies a large part of the system and which at 1250 °C is bounded by the compositions UO2-UO2.25 (U0.43, ThO0.57)O0.25-ThO3. The maximum O/M ratio of the “fluorite” phase is O:(U + Th) = 2.25. The highest oxidation valency of uranium is 5.30; this value falls as more thorium oxide is incorporated in the (U.Th)O2 + x “fluorite” phase.  相似文献   

14.
The role of cubic Pu2O3 in the corrosion of PuO2-coated Pu by H2 was investigated. Experiments were conducted to demonstrate that nucleation of hydriding is promoted by formation of Pu2O3 sites in the oxide layer. The nucleation mechanism based on diffusion of hydrogen through the PuO2 layer was evaluated and an alternative mechanism based on formation of catalytic Pu2O3 sites via the Pu-PuO2 reaction is proposed. The possibility of active participation of other impurities and inclusions in the dioxide is also discussed.  相似文献   

15.
The interface of thin Lu2O3 on silicon has been studied using high-resolution RBS (HRBS) for samples annealed at different temperatures. Thin rare earth metal oxides are of interest as candidates for next generation transistor gate dielectrics, due to their high-k values allowing for equivalent oxide thickness (EOT) of less than 1 nm. Among them, Lu2O3 has been found to have the highest lattice energy and largest band gap, making it a good candidate for an alternative high-k gate dielectric. HRBS depth profiling results have shown the existence of a thin (∼2 nm) transitional silicate layer beneath the Lu2O3 films. The thicknesses of the Lu2O3 films were found to be ∼8 nm and the films were determined to be non-crystalline. Angular scans were performed across the [1 1 0] and [1 1 1] axis along planar channels, and clear shifts in the channeling minimum indicate the presence of Si lattice strain at the silicate/Si interface.  相似文献   

16.
The kinetics of initial stage sintering of UO2 powder were reinvestigated, using Ar-10% H2 atmosphere. The effect of the addition of neodynium oxide was studied. The results revealed that surface and grain boundary diffusion mechanisms act simultaneously. The values of activation energies were found to be 48.48 ± 3.51 kcal/mole in the temperature range 870–942°C and 89.88 ± 9.87 kcal/mole in the temperature range of 942–1030°C for UO2, and 115.61 ± 7.77 kcal/mole in the temperature range 1030–1150°C for UO2 + Nd2O3. An important decrease in the calculated diffusion coefficient occurs by the addition of Nd2O3.  相似文献   

17.
The kinetics of CRUD oxidation by H2O2 has been studied using aqueous suspensions of metal oxide powder. Fe3O4, Fe2CoO4 and Fe2NiO4 were used as model compounds for CRUD. In addition, the activation energies for the reaction between H2O2 and the three CRUD models were determined. The rate constants at room temperature were determined to 6.6 (±0.4) × 10−9, 3.4 (±0.4) × 10−8 and 1.6 × 10−10 m min−1 for Fe3O4, Fe2CoO4 and Fe2NiO4, respectively. The corresponding activation energies are 52 ± 4, 44 ± 5 and 57 ± 7 kJ mol−1, respectively. The mechanism of the reaction is briefly discussed indicating that the final solid product in all three cases is Fe2O3. In addition to the experimental studies, the theoretical grounds for kinetics of reactions in particle suspensions are discussed. The theoretical discussion is also used to explain the somewhat unexpected trends in reactivity observed experimentally.  相似文献   

18.
The structure and elastic property of nanosized complex oxide particles in a ferritic/martensitic alloy containing titanium and silicon were studied by transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS). The nanosized complex Y-Si-O particles were found in the matrix of the alloy in addition to Y-Ti-O, and the size of Y-Si-O is smaller than that of Y-Ti-O particles. The formation of Y2.16Si1.76O7 and Y2.15Ti1.95O7 were further confirmed by O K, Si L2,3 and Ti L2,3 edges, respectively. The bulk modulus of Y2.16Si1.76O7 was shown to be lower than that of Y2.15Ti1.95O7, which implies that the nanosized Y2.16Si1.76O7 particles would provide more effective dislocation pinning at elevated temperatures.  相似文献   

19.
Equilibrium phase fields of the ternary Pb-Bi-O system were established by long-term equilibration in the temperature range 660-840 K. Using these results, the partial phase diagram of the ternary system has been constructed. The standard molar Gibbs energy of formation of the ternary oxides, 〈Pb5Bi8O17〉 and 〈PbBi12O19〉, was determined by measuring the equilibrium oxygen partial pressures over the relevant phase fields by static manometry in conjunction with a solid oxide electrolyte-based emf cell. Further, the standard molar Gibbs energy of formation of 〈Pb3O4〉 was also measured by the manometric method. The oxide that coexists with the Pb-Bi eutectic alloy (LBE) has been experimentally confirmed as [β-PbO]ss. Using the thermochemical data measured, the compositions of Pb-Bi alloys that coexist with [β-PbO]ss and ternary oxides were derived and reported.  相似文献   

20.
Using results of density functional theory (DFT) calculations the first attempt towards the understanding of Y2O3 particles formation in oxide dispersed strengthened (ODS) ferritic-martensitic steels was performed. The present work includes modeling of single defects (O impurity atom, Fe vacancy and Y substitute atom), interaction between substituted Y atoms, Y-Fe vacancy pairs and oxygen impurity atoms in the iron matrix. The calculations have showed the repulsive interaction between the two Y substitute atoms at any separation distances that might mean that the oxygen atoms or O atoms with vacancies are required to form binding between atoms in the yttrium oxide nanoclusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号