首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to initiate studies on the phenotypic properties of hybrids vs. their putative parents, the in vitro growth behaviour of promastigotes was compared for 15 stocks characterised as Leishmania (Viannia) braziliensis, Leishmania (Viannia) peruviana and putative hybrids (isolated from the Eastern Andean valley of Huanuco, Peru). Five sets of three stocks, each set including a L.(V.)braziliensis, a L.(V.)peruviana and a putative hybrid, were constituted randomly and counted daily close to isolation from man (ten to 18 subcultures). Hybrids and L.(V.)peruviana presented similar growth characteristics, and they displayed a growth capacity (growth rate and cell density at stationary phase) significantly lower than the one of L.(V.)braziliensis. Following prolonged in vitro maintenance of one of the sets, the hybrid kept its lower growth capacity. The contrast between the difficulty to grow in vitro these putative hybrids, and their high isolation rate from natural populations is discussed.  相似文献   

2.
The phytohormone auxin controls processes such as cell elongation, root hair development and root branching. Tropisms, growth curvatures triggered by gravity, light and touch, are also auxin-mediated responses. Auxin is synthesized in the shoot apex and transported through the stem, but the molecular mechanism of auxin transport is not well understood. Naphthylphthalamic acid (NPA) and other inhibitors of auxin transport block tropic curvature responses and inhibit root and shoot elongation. We have isolated a novel Arabidopsis thaliana mutant designated roots curl in NPA (rcn1). Mutant seedlings exhibit altered responses to NPA in root curling and hypocotyl elongation. Auxin efflux in mutant seedlings displays increased sensitivity to NPA. The rcn1 mutation was transferred-DNA (T-DNA) tagged and sequences flanking the T-DNA insert were cloned. Analysis of the RCN1 cDNA reveals that the T-DNA insertion disrupts a gene for the regulatory A subunit of protein phosphatase 2A (PP2A-A). The RCN1 gene rescues the rcn1 mutant phenotype and also complements the temperature-sensitive phenotype of the Saccharomyces cerevisiae PP2A-A mutation, tpd3-1. These data implicate protein phosphatase 2A in the regulation of auxin transport in Arabidopsis.  相似文献   

3.
In the investigation of the sequences of myosin phosphatase target subunit 1 (MYPT1) involved in binding the substrate and catalytic subunit of protein phosphatase type 1 (PP1c), fragments of MYPT1 were prepared and characterized. The shortest fragment capable of full activation of PP1c contained the sequence of residues 1-295. Within this fragment, the N-terminal sequence of residues 1-38 is involved in activation of PP1c (kcat) and the ankyrin repeats (residues 39-295) were involved in substrate binding (Km). The ankyrin repeats alone (residues 39-295) and the C-terminal fragment of residues 667-1004 did not activate PP1c. Using gel filtration, an interaction with PP1c was detected for the sequences of residues 1-295, 17-295, and 1-170. Affinity columns were prepared with various fragments to assess binding of PP1c. Binding to the column with residues 1-295 was strongest, followed by the binding to the column with residues 1-170. A weak interaction was observed with the column with residues 1-38. The column with residues 1-295 was used to isolate PP1c from gizzard. The purified PP1c was activated by MYPT1 and fragments to a greater extent than previous preparations. These results suggest that the N-terminal sequence (residues 1-38) and the ankyrin repeats are involved in binding PP1c. The C-terminal ankyrin repeats appear to be dominant, but there is an interaction of PP1c with the N-terminal ankyrin repeats. The N-terminal peptide has two apparent functions, the binding of PP1c via the consensus binding sequence and activation of PP1c by the sequence of residues 1-16.  相似文献   

4.
A method is described for the measurement of pimozide in human plasma using HPLC with fluorescence detection. The method is specific and sensitive in the range of concentrations seen in human plasma after conventional dosing (1-15 ng/ml) with a limit of quantification of 1 ng/ml. The calibration curves are linear for concentrations between 1 and 50 ng/ml. Within-day and inter-day coefficients of variation are less than 7.4% and 15.5%, respectively, at three concentrations of pimozide (2, 10 and 20 ng/ml). Intra-day and inter-day bias are less than 18.5% and 12.5%, respectively. A pharmacokinetic study conducted in a healthy volunteer administered 6 mg of pimozide orally demonstrates the utility of this method.  相似文献   

5.
6.
Timely deactivation of kinase cascades is crucial to the normal control of cell signaling and is partly accomplished by protein phosphatase 2A (PP2A). The catalytic (alpha) subunit of the serine-threonine kinase casein kinase 2 (CK2) bound to PP2A in vitro and in mitogen-starved cells; binding required the integrity of a sequence motif common to CK2alpha and SV40 small t antigen. Overexpression of CK2alpha resulted in deactivation of mitogen-activated protein kinase kinase (MEK) and suppression of cell growth. Moreover, CK2alpha inhibited the transforming activity of oncogenic Ras, but not that of constitutively activated MEK. Thus, CK2alpha may regulate the deactivation of the mitogen-activated protein kinase pathway.  相似文献   

7.
Rapamycin is an immunosuppressant that effectively controls various immune responses; however, its action in the signal transduction of lymphocytes has remained largely unknown. We show here that a phosphoprotein encoded by mouse alpha4 (malpha4) gene transmitting a signal through B-cell antigen receptor (BCR) is associated with the catalytic subunit of protein phosphatase 2A (PP2Ac). The middle region of alph4, consisting of 109 amino acids (94-202), associates directly with PP2Ac, irrespective of any other accessory molecule. Rapamycin treatment disrupts the association of PP2Ac/alpha4 in parallel with the inhibitory effect of lymphoid cell proliferation. The effect of rapamycin was inhibited with an excess amount of FK506 that potentially completes the binding to FKBP. Rapamycin treatment also suppresses the phosphatase activity of cells measured by in vitro phosphatase assay. Introduction of the malpha4 cDNA into Jurkat cells or the increased association of PP2Ac/alpha4 by the culture with low serum concentration confers cells with rapamycin resistance. Moreover, glutathione S-transferase (GST)-alpha4 augments the PP2A activity upon myelin basic protein (MBP) and histone in the in vitro assay. These results suggest that alpha4 acts as a positive regulator of PP2A and as a new target of rapamycin in the activation of lymphocytes.  相似文献   

8.
The AMP-activated protein kinase is a heterotrimeric enzyme, important in cellular adaptation to the stress of nutrient starvation, hypoxia, increased ATP utilization, or heat shock. This mammalian enzyme is composed of a catalytic alpha subunit and noncatalytic beta and gamma subunits and is a member of a larger protein kinase family that includes the SNF1 kinase of Saccharomyces cerevisiae. In the present study, we have identified by truncation and site-directed mutagenesis several functional domains of the alpha1 catalytic subunit, which modulate its activity, subunit association, and protein turnover. C-terminal truncation of the 548-amino acid (aa) wild-type alpha1 protein to aa 312 or 392 abolishes the binding of the beta/gamma subunits and dramatically increases protein expression. The full-length wild-type alpha1 subunit is only minimally active in the absence of co-expressed beta/gamma, and alpha1(1-392) likewise has little activity. Further truncation to aa 312, however, is associated with a large increase in enzyme specific activity, thus revealing an autoinhibitory sequence between aa 313 and 392. alpha-1(1-312) still requires the phosphorylation of the activation loop Thr-172 for enzyme activity, yet is now independent of the allosteric activator, AMP. The increased levels of protein expression on transient transfection of either truncated alpha subunit cDNA are because of a decrease in enzyme turnover by pulse-chase analysis. Taken together, these data indicate that the alpha1 subunit of AMP-activated protein kinase contains several features that determine enzyme activity and stability. A constitutively active form of the kinase that does not require participation by the noncatalytic subunits provides a unique reagent for exploring the functions of AMP-activated protein kinase.  相似文献   

9.
In eukaryotic cells a number of different proteins with important regulatory functions are reversibly methyl-esterified at carboxyl-terminal prenylcysteine residues. These proteins include the low molecular weight GTP-binding proteins, the gamma-subunit of the heterotrimeric G-proteins, and the nuclear lamins. The methylating enzymes that catalyze this type of carboxyl methylation reaction are integral membrane proteins, and the methylated protein products tend to be membrane-associated. Analyses of protein carboxyl methylation in a wide range of vertebrate tissues revealed a major carboxyl-methylated protein that was clearly distinct from those that are modified at prenylcysteine groups (Volker, C., Miller, R.A., McCleary, W.R., Rao, A., Poenie, M., Backer, J.M., and Stock, J.B. (1991) J. Biol. Chem. 266, 21515-21522). This M(r) = 36,000 protein is localized to the cytosol. Unlike the prenylcysteine methyltransferases, the enzyme that catalyzes the methylation of the 36-kDa protein is found in the cytosol. The 36-kDa methylated protein has been purified from bovine brain. Sequence analysis of several peptides clearly shows that the protein is the catalytic subunit of protein phosphatase 2A. A soluble 40-kDa methyltransferase that catalyzes the reaction has also been purified.  相似文献   

10.
Protein phosphatase 2A (PP2A) is one of the most important and abundant serine/threonine phosphatases in mammalian tissues and plays a role in gene expression, cell division, and signal transduction. PP2A is activated by ceramide, which is produced by the hydrolysis of membrane sphingomyelin in response to a variety of stress-related stimuli. To further study the role of ceramide-mediated signal transduction in cellular processes such as senescence and apoptosis, we designed and synthesized a series of low molecular weight aromatic compounds, mainly of the isoquinolone and tetralone classes, and evaluated their ability to inhibit enzymes known to be activated by ceramide. Those enzymes studied were ceramide-activated protein kinase, protein kinase C zeta and PP2A. Of these, only PP2A was found to be inhibited. A few of the compounds inhibited both ceramide-activated as well as basal PP2A activity. In addition, several of the compounds activated PP2A by up to 300% above basal enzyme activity, but only in the presence of ceramide. Thus, modulation (both inhibition and activation) of the catatylic activity of ceramide-activated PP2A is demonstrated by certain low molecular weight aromatic compounds.  相似文献   

11.
Protein phosphorylation is a universal regulatory mechanism in eukaryotic cells. The phosphorylation state of proteins is affected by the antagonistic activities of protein kinases and phosphatases. Protein phosphatases (PPs) can be classified as serine/threonine and tyrosine specific phosphatases. Ser/Thr phosphatases are divided into four subclasses (PP1, PP2A, PP2B, PP2C) on the basis of their substrate specificity, metal ion dependence and inhibitor sensitivity. We were able to detect the activities of all four Ser/Thr protein phosphatases in the mycelial extract of Neurospora crassa. The catalytic subunit of PP1 was purified 1500-fold with a yield of 1.3% using ammonium sulfate-ethanol precipitation, DEAE-Sephacel, heparin-Sepharose and MonoQ FPLC chromatography. The protein product was nearly homogenous, as judged by SDS-polyacrylamide gel electrophoresis. The most important properties of the enzyme were the following: /1/ its molecular mass proved to be 35 kD, /2/ it was completely inhibited by inhibitor-2, microcystin and okadaic acid, /3/ it was bound to heparin-Sepharose, and /4/ its specific activity was 2000 mU/mg. These biochemical properties are very similar to those of the homologous enzyme from rabbit muscle and indicate a high level of conservation of PP1 structure during evolution.  相似文献   

12.
cDNA encoding the regulatory subunit of bovine mitochondrial pyruvate dehydrogenase phosphatase (PDPr) has been cloned. Overlapping cDNA fragments were generated by the polymerase chain reaction from bovine genomic DNA and from cDNA synthesized from bovine poly(A)+ RNA and total RNA. The complete cDNA (2885 base pairs) contains an open reading frame of 2634 nucleotides encoding a putative presequence of 31 amino acid residues and a mature protein of 847 residues with a calculated Mr of 95,656. This value is in agreement with the molecular mass of native PDPr (95,800 +/- 200 Da) determined by matrix-assisted laser desorption-ionization mass spectrometry. The mature form of PDPr was expressed in Escherichia coli as a maltose-binding protein fusion, and the recombinant protein was purified to near homogeneity. It exhibited properties characteristic of the native PDPr, including recognition by antibodies against native bovine PDPr, ability to decrease the sensitivity of the catalytic subunit to Mg2+, and reversal of this inhibitory effect by the polyamine spermine. A BLAST search of protein data bases revealed that PDPr is distantly related to the mitochondrial flavoprotein dimethylglycine dehydrogenase, which functions in choline degradation.  相似文献   

13.
Using a specific antibody against the PDP catalytic subunit, PDPc, precise localization of this subunit in mitochondria was performed. Sub-fractionation of purified mitochondria by controlled swelling processes led to the isolation of outer membranes, matrix space and inner membrane vesicles which were purified on a sucrose density gradient. In this study, we demonstrated that PDPc was not recovered as a soluble protein in the matrix space but was associated with the inner membrane. Moreover, Triton X-114 phase partitioning performed on inner membranes showed that PDPc behaved both as a hydrophilic and as a hydrophobic protein, thus suggesting two different forms of this enzyme.  相似文献   

14.
In endothelial cells in situ and in primary culture, immunoblot analysis revealed an expression of the 130-kDa subunit of myosin phosphatase, similar to the myosin phosphatase targeting subunit (MYPT) of smooth muscle. Screening of an endothelial cell cDNA library yielded a clone encoding an NH2-terminal fragment of 89.6 kDa, closely related to smooth muscle MYPT1. Two isoforms differing by a central insert of 56 residues were detected. In growing cells, MYPT1 was localized on stress fiber, but at confluence the localization pattern changed and MYPT1 was distributed close to the cell membrane and at cell-cell contacts. The membrane localization of MYPT1 suggested a target other than myosin and raised the possibility that MYPT1 may be involved in dephosphorylation of alternative substrate(s). These distinct mechanisms would also be dependent on the growth state of the endothelial cells, i.e., regulation of actin-myosin interactions in growing cells and an unknown function in cells at confluence.  相似文献   

15.
RATIONALE AND OBJECTIVES: We compared adverse reactions and image quality for hysterosalpingography (HSG) performed with ionic (diatrizoate meglumine combined with iodipamide meglumine [DM + IM]) and nonionic (iohexol) contrast media. METHODS: We performed a study of 95 patients who had HSG and were randomly selected to receive DM + IM or iohexol. Patients reported episodes of abdominal pain and other adverse reactions immediately and 24 hr after the procedure and categorized severity of symptoms on a subjective scale. Two radiologists evaluated image quality for diagnosis. RESULTS: Prevalence of abdominal pain and other reactions both immediately and 24 hr after HSG was lower in patients who received iohexol than in patients who received DM + IM. Moderate or severe abdominal pain was significantly lower in the iohexol group than in the DM + IM group (p < .05). Visualization of the uterine cavity and ampullary rugae was judged excellent with both contrast media (87% with iohexol and 92% with DM + IM). CONCLUSION: Iohexol and DM + IM are excellent contrast media for use during HSG; iohexol 300 may cause fewer episodes of more severe and prolonged abdominal pain.  相似文献   

16.
rgb-1, encoding the tentative B regulatory subunit of the type 2A Ser/Thr phosphatase in Neurospora crassa, was isolated from cDNA and genomic libraries. Based on analysis of cDNA and genomic clones, rgb-1 is 3387 nucleotides in length, contains seven putative introns and encodes a 461-amino-acid polypeptide. Intron I, which is 5' to the presumed translation initiation codon, contains a uORF encoding 34 amino acids. Intron VI undergoes alternative splicing. Inactivation of rgb-1 by the repeat-induced point (RIP) mutation procedure produced progeny that grow slowly, have abnormal hyphal morphology, are female sterile and produce abundant amounts of arthroconidia. The rgb-1RIP strain does not produce major constriction chains or mature macroconidia. Minor constriction chains are formed, yet the growth process reverts to hyphal elongation. Microscopic and genetic analyses indicate that rgb-1 is a regulator of the budding subroutine of the macroconidiation process and that arthroconidiation, which shares common early and late events with macroconidiation, is induced as a default mechanism for asexual reproduction in this fungus.  相似文献   

17.
We have previously shown that direct activation of protein kinase A (PKA) and protein kinase C (PKC) induced changes in the expression of genes coding for PKA RII beta and C alpha subunit isoforms in cultured anterior pituitary cells, suggesting the possibility of interconnected regulation at this point. To evaluate whether the cell content of PKA protein subunits could be similarly altered, the catalytic (C) and regulatory type I (RI) and type II (RII) subunits were identified by Western blot analysis using specific immunoaffinity-purified antibodies. Activation of PKA by the permeant cyclic adenosine monophosphate (cAMP) analogue 8-Br-cAMP induced a dramatic time- and concentration-dependent decline of C subunit to a residual level that may represent 10-15% of that in untreated cells. The most profound decrease occurred during the first 5 h following treatment with 0.5-2 mM analogue (by 65 +/- 14 and 79 +/- 5%, respectively). Under identical conditions, RII was increased by about 40% at the higher concentrations, while RI increased slightly, but only at low concentrations (below 1 mM 8-Br-cAMP), and then gradually decreased. Exposure of cells to the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) also resulted in decreased levels of the PKA C subunit, however, with a different concentration-dependent profile. In particular, a decline in PKA C was most pronounced (60%) at a low concentration of TPA (10 nM) as compared with the concentrations equal to or above 20 nM (40% decrease). TPA at 10 nM also depressed notably (by 25%) the level of RII subunit, but higher concentrations were essentially ineffective, although a slight and statistically not significant elevation of the cell subunit content was observed as for RI. Simultaneous activation of both PKA and PKC pathways resulted in further depletion of PKA C and an important loss (50%) of RII, a subunit which was enhanced by the activation of either system alone. Finally, gonadotropin-releasing hormone, a neuropeptide that has the potentiality to activate both PKA and PKC signaling in gonadotropes, was able to alter PKA subunit cell content: PKA C was significantly reduced at either a subliminal (0.1 nM) or maximal (10 nM) concentration, whereas RII increased at the low concentration and decreased at the high concentration. In conclusion, these data demonstrate that the pituitary cell contents of RI, RII, and C subunits of PKA are regulated under the activation of PKA itself as well as PKC in a manner that can exhibit further alteration when both systems come simultaneously into play. Changes in the PKA subunit levels in certain cases may correlate with a variation of the mRNAs suggesting multiple control mechanisms, including an alteration of gene expression and changes in subunit degradation, synthesis, and/or turnover. These data, together with those obtained in the presence of gonadotropin-releasing hormone, provide further support for a hormonally induced interplay between PKA and PKC signaling pathways at the crucial level of PKA in the pituitary gland including gonadotropes.  相似文献   

18.
We propose a novel model for the regulation of the p85/pl10alpha phosphatidylinositol 3'-kinase. In insect cells, the p110alpha catalytic subunit is active as a monomer but its activity is decreased by coexpression with the p85 regulatory subunit. Similarly, the lipid kinase activity of recombinant glutathione S-transferase (GST)-p110alpha is reduced by 65 to 85% upon in vitro reconstitution with p85. Incubation of p110alpha/p85 dimers with phosphotyrosyl peptides restored activity, but only to the level of monomeric p110alpha. These data show that the binding of phosphoproteins to the SH2 domains of p85 activates the p85/p110alpha dimers by inducing a transition from an inhibited to a disinhibited state. In contrast, monomeric p110 had little activity in HEK 293T cells, and its activity was increased 15- to 20-fold by coexpression with p85. However, this apparent requirement for p85 was eliminated by the addition of a bulky tag to the N terminus of p110alpha or by the growth of the HEK 293T cells at 30 degrees C. These nonspecific interventions mimicked the effects of p85 on p110alpha, suggesting that the regulatory subunit acts by stabilizing the overall conformation of the catalytic subunit rather than by inducing a specific activated conformation. This stabilization was directly demonstrated in metabolically labeled HEK 293T cells, in which p85 increased the half-life of p110. Furthermore, p85 protected p110 from thermal inactivation in vitro. Importantly, when we examined the effect of p85 on GST-p110alpha in mammalian cells at 30 degrees C, culture conditions that stabilize the catalytic subunit and that are similar to the conditions used for insect cells, we found that p85 inhibited p110alpha. Thus, we have experimentally distinguished two effects of p85 on p110alpha: conformational stabilization of the catalytic subunit and inhibition of its lipid kinase activity. Our data reconcile the apparent conflict between previous studies of insect versus mammalian cells and show that p110alpha is both stabilized and inhibited by dimerization with p85.  相似文献   

19.
Beta subunits of voltage-gated Ca2+ channels are encoded in four genes and display additional molecular diversity because of alternative splicing. At the functional level, all forms are very similar except for beta2a, which differs in that it does not support prepulse facilitation of alpha1C Ca2+ channels, inhibits voltage-induced inactivation of neuronal alpha1E Ca2+ channels, and is more effective in blocking inhibition of alpha1E channels by G protein-coupled receptors. We show that the distinguishing properties of beta2a, rather than interaction with a distinct site of alpha1, are because of the recently described palmitoylation of cysteines in positions three and four, which also occurs in the Xenopus oocyte. Essentially, all of the distinguishing features of beta2a were lost in a mutant that could not be palmitoylated [beta2a(Cys3,4Ser)]. Because protein palmitoylation is a dynamic process, these findings point to the possibility that regulation of palmitoylation may contribute to activity-dependent neuronal and synaptic plasticity. Evidence is presented that there may exist as many as three beta2 splice variants differing only in their N-termini.  相似文献   

20.
We previously reported the immunopurification of a somatostatin receptor from the human tumoral gastric cell HGT1 using the monoclonal antibody 30F3 (Reyl-Desmars, F., Le Roux, S., Linard, C., Benkouka, F., and Lewin, M. J. M. (1989) J. Biol. Chem. 264, 18789-18795). Screening of a lambda gt11 HGT1-cDNA library with 30F3 led us to isolate a cDNA encoding an 86-kDa polypeptide displaying 100% structural identity with the 86-kDa subunit (p86-Ku) of the Ku autoantigen. Recombinant p86 expressed in Escherichia coli cross-reacted with 30F3 and specifically bound [125I-Tyr11]somatstatin-14. Binding was totally displaced by somatostatin-14, somatostatin-28, and SMS 201-995, with IC50 values of 0.7, 1.0, and 1.2 nM, respectively. In a search for a biological effect associated with binding, we purified a 36-kDa, okadaic acid-sensitive phosphatase (protein phosphatase-2A (PP2A)) from rat gastric cytosol. PP2A catalyzed 32P release from p34cdc2-phosphorylated histone H1. However, PP2A-induced 32P release was concentration dependently inhibited by recombinant p86-Ku, with a decrease in maximal velocity without a change in Km. Steric exclusion high pressure chromatography indicated that the inhibition resulted from direct interaction of the enzyme with p86-Ku. Furthermore, it was antagonized by increased concentrations of somatostatin-14 and prevented by preincubating p86-Ku with 30F3. Given the key role played by PP2A in cell cycle regulation, the current findings suggest that p86-Ku could be a physiological target of somatostatin antiproliferative action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号