共查询到20条相似文献,搜索用时 53 毫秒
1.
基于改进FP-tree的最大频繁项集挖掘算法 总被引:7,自引:1,他引:7
现有的最大频繁项集挖掘算法在挖掘过程中需要进行超集检测,基于FP-tree的算法需要递归的建立条件频繁模式树,挖掘效率不高.提出了一种基于改进FP-tree高效挖掘最大频繁项集的算法(MMFI).该算法修改了FP-tree结构并采用NBN策略,在挖掘过程中既不需要进行超集检测也不需要递归的建立条件频繁模式树.算法分析和实验结果表明,该算法是一种有效、快速的算法. 相似文献
2.
针对最大频繁项目集挖掘算法(DMFIA)当候选项目集维数高而最大频繁项目集维数较低的情况下要产生大量的候选项目集的缺点,提出了一种改进的基于频繁模式树(FP-tree)结构的最大频繁项目集挖掘算法--FP-MFIA。该算法根据FP-tree的项目头表,采用自底向上的搜索策略逐层挖掘最大频繁项目集,从而加速每次对候选集计数的操作。在挖掘时根据每层的条件模式基产生维数较低的非频繁项目集,尽早对候选项目集进行剪枝和降维,可大量减少候选项目集的数量。同时在挖掘时充分利用最大频繁项集的性质,减少搜索空间。通过算法在不同支持度下挖掘时间的对比可知,算法FP-MFIA在最小支持度较低的情况下时间效率是DMFIA以及基于降维的最大频繁模式挖掘算法(BDRFI)的2倍以上,说明FP-MFIA在候选集维数较高的时候优势明显。 相似文献
3.
研究挖掘关联规则的一个重要工作就是找出所有的频繁项集。基于FP—tree的最大频繁项集挖掘算法要多次生成大量的FP—tree,并且需要对其多次遍历,消耗了大量的时间。针对以上缺点,提出一种基于FP—tree并利用数组和矩阵技术进行优化的最大频繁项集挖掘算法(Mining Maximal Frequent Itemset。简称MMFI),它既减少创建FP—tree的数量,又节省遍历FP—tree的时间,实验证明本算法是有效的。 相似文献
4.
最大频繁项集的挖掘过程中,在最小支持度较小的情况下,超集检测是算法的主要耗时操作.提出了最大频繁项集挖掘算法FPMFI(frequent pattern tree for maximal frequent item set)使用基于投影进行超集检测的机制,有效地缩减了超集检测的时间.另外,算法FPMFI通过删除FP子树(conditional frequent pattern tree)的冗余信息,有效地压缩了FP子树的规模,减少了遍历的开销.分析表明,算法FPMFI具有优越性.实验比较说明,在最小支持度较小时,算法FPMFI的性能优于同类算法1倍以上. 相似文献
5.
研究基于条件模式基排序的最大频繁项集挖掘算法。通常在基于FP-tree(frequent pattern tree)的最大频繁项集挖掘算法中,影响执行效率的主要是递归和超集检测。因此提出了改进的最大频繁项集挖掘算法S-FP-MFI(sorted frequent pattern tree for maximal frequent item set),根据条件模式基含有的项目数对条件模式基进行动态排序,以减少递归次数;另外基于MFI-tree(maximalfrequent item tree)的投影策略减少了超集检测时间。实验表明S-FP-MFI算法在支持度较小的情况下,具有优越性。 相似文献
6.
CHEN Chen 《数字社区&智能家居》2008,(32)
关联规则挖掘是近年来数据挖掘领域中一个相当活跃的领域,频繁项集挖掘是关联规则挖掘中最重要的任务。最大频繁项集的规模远远小于频繁项集的规模,通过最大频繁项集可以导出所有的频繁项集,因此进行了很多专门挖掘最大频繁项集的研究。给出了关联规则和相关术语的基本概念,对最大频繁项集挖掘算法作了分析与评价,便于研究者对已有的算法进行改进,提出具有更好性能的新算法。 相似文献
7.
由于基于Fp-tree的DMFIA算法在生成最大频繁项目集时会产生大量的候选频繁项集,通过改进传统的FP-tree结构,并提出了一种基于改进FP-tree的最大频繁模式挖掘算法FP-MFI,该算法不需要生成最大频繁候选项目集,改进的FP-tree是单向的,每个节点只保留了指向父节点的指针,可节约树空间.实验结果表明FP-MFI算法在数据库中频繁项目很多,而每一个事务中频繁项目很少的情况下,比同样基于FP-tree的DMFIA算法挖掘最大频繁项目集的效率更高. 相似文献
8.
在数据挖掘中,通过挖掘最大频繁项集来代替挖掘频繁项集可以大大地提升系统的运行效率。针对现有的最大频繁项集挖掘算法的运行时间消耗仍然很大的问题,提出了一种基于DiffNodeset结构的最大频繁项集挖掘(DNMFIM)算法。首先,采用了一种新的数据结构DiffNodeset来实现求交集以及支持度的快速计算;其次,引入一种新的线性复杂度的连接方法来降低两个DiffNodeset在连接过程中的复杂度,避免了多次的无效计算;然后,将集合枚举树作为搜索空间,同时采用多种优化剪枝策略来缩小搜索空间;最后,再结合最大频繁项集挖掘算法(MAFIA)中所使用的超集检测技术来有效地提高算法的准确性。实验结果表明,DNMFIM算法在时间效率方面性能优于MAFIA与基于N-list的MAFIA(NB-MAFIA),该算法在不同类型数据集中进行最大频繁项集挖掘时均有良好的效果。 相似文献
9.
基于频繁项集挖掘最大频繁项集和频繁闭项集 总被引:2,自引:1,他引:2
提出了基于频繁项集的最大频繁项集(BFI-DMFI)和频繁闭项集挖掘算法(BFI-DCFI)。BFI-DMFI算法通过逐个检测频繁项集在其集合中是否存在超集确定该项集是不是最大频繁项集;BFI-DCFI算法则是通过挖掘所有支持度相等的频繁项集中的最大频繁项集组合生成频繁闭项集。该类算法的提出,为关联规则的精简提供了一种新的解决方法。 相似文献
10.
11.
12.
分析了New-Apriori和MWFI(Mining Weighted Frequent Itemsets)算法之不足,提出了一种挖掘加权频繁项集的New-MWFI算法。该算法按属性的权值对事务进行分类,并依次求出每个类别内的加权频繁项集。由于每个类别内的频繁项集满足Apriori性质,因而可以利用Apriori算法或其他改进算法进行挖掘,从而克服了原来算法的不合理和效率低下的缺陷。实验表明该算法能更有效地从数据集中挖掘出加权频繁项集。 相似文献
13.
为了解决目前带约束的频繁项集挖掘算法在具有长模式的密集型数据库中挖掘的不足,提出了一种快速的基于约束的最大频繁项集挖掘算法。该算法在特定约束条件的基础上运用了深度优先策略和有效的剪枝方法快速挖掘最大频繁项集。实验结果表明了该算法是快速有效的。 相似文献
14.
提出了一种基于DSM MFI算法的改进算法DSMMFI DS算法,它首先将事务数据按一定的全序关系存入DSFI list列表中;然后按排序后的顺序存储到类似概要数据结构的树中;接着删除树中和DSFI list列表中的非频繁项,同时删除窗口衰退支持数大的事务项;最后采用自顶向下和自底向上的双向搜索策略来挖掘数据流的最大频繁项集。通过用例分析和实验表明,该算法比DSM MFI算法具有更好的执行效率。 相似文献
15.
快速挖掘频繁项目集算法 总被引:2,自引:0,他引:2
马丽生 《计算机工程与设计》2009,30(8)
频繁项目集挖掘是数据挖掘领域最重要的基本问题之一,在分析已有算法的基础上,提出了一种能够快速挖掘频繁项目集的算法,对频繁项目集挖掘的搜索空间以及数据表示进行了优化,缩小搜索空间和数据表示的规模,减少计算项目集支持数的时间,提高算法的执行效率,实验结果表明,该算法在性能上优于FP-Growth算法. 相似文献
16.
针对已有的多数据流协同频繁项集挖掘算法存在内存占用率高以及发现频繁项集效率低的问题,提出了改进的多数据流协同频繁项集挖掘(MCMD-Stream)算法。首先,该算法利用单遍扫描数据库的字节序列滑动窗口挖掘算法发现数据流中的潜在频繁项集和频繁项集;其次,构建类似频繁模式树(FP-Tree)的压缩频繁模式树(CP-Tree)存储已发现的潜在频繁项集和频繁项集,同时更新CP-Tree树中每个节点生成的对数倾斜时间表中的频繁项计数;最后,通过汇总分析得出在多条数据流中多次出现的且有价值的频繁项集,即协同频繁项集。相比A-Stream和H-Stream算法,MCMD-Stream算法不仅能够提高多数据流中协同频繁项集挖掘的效率,并且还降低了内存空间的使用率。实验结果表明MCMD-Stream算法能够有效地应用于多数据流的协同频繁项集挖掘。 相似文献
17.
18.
最大频繁项集挖掘用于发现频繁地出现在数据集中的最大子集,目前已经有许多有效的算法。应用蚁群算法挖掘最大频繁项集是一种新的方法,但是该算法往往迭代次数多,提取率低。结合频繁项集关联图和最大最小蚂蚁系统,提出一种新的蚁群算法。算法构造蚁群路径图,蚁群在动态的信息素和启发式因子指导下构造局部最大频繁项集,通过新的局部更新和全局更新机制发现全局最大频繁项集。对比实验表明,算法挖掘速度快,提取率高。 相似文献
19.
基于FP-tree的最大频繁项目集挖掘算法 总被引:1,自引:0,他引:1
最大频繁项目集挖掘是数据挖掘领域最重要的基本问题之一,在分析已有算法的基础上提出了FP-MMFI算法,它是对FP-growth算法在最大频繁项目集挖掘上的扩展.提出了频繁路径的概念,用它可以有效地对FP-tree进行压缩和缩小搜索空间,同时使用投影的方法对超集检测进行了优化,减少了项目匹配的次数.最后实验结果表明,该算法在性能上优于已有的同类算法. 相似文献