共查询到20条相似文献,搜索用时 15 毫秒
1.
G.B. Stachowiak 《Wear》2004,256(6):600-607
Three-body abrasive wear resistance of mild steel and 27%Cr white cast iron was investigated using a ball-cratering test. Glass beads, silica sand, quartz and alumina abrasive particles with sizes larger than 200 μm were used to make slurries. It was found that the wear rates of mild steel increased with sliding time for all abrasive particles tested, while the wear rates of 27%Cr white cast iron were almost constant with sliding time. This increase in the wear rates of mild steel was mainly due to the gradual increase in ball surface roughness with testing time. Abrasive particles with higher angularity caused higher ball surface roughness. Soft mild steel was more affected by this ball surface roughness changes than the hard white cast iron. Generally, three-body rolling wear dominated. The contribution of two-body grooving wear increased when the ball roughness was significant. The morphological features of the wear scars depended on the shape of the abrasive particles and also on the hardness and microstructure of the wear material. Angular particles generated rough surfaces similar to those usually observed in high angle erosion tests. Rounded particles generated smoother surfaces with the middle area of the wear craters having similar morphology to those observed in low angle erosion. 相似文献
2.
The application of a ball-cratering method to test three-body abrasive wear of bulk materials in the presence of large abrasive particles has been investigated. Three high-Cr white cast irons (WCIs) with different material properties were used as wear samples. Abrasive slurries contained two types of abrasive particles, silica sand and crushed quartz. Silica sand and crushed quartz particles have similar chemical composition and hardness but differ in sharpness. Wear rates of WCI samples were determined and the worn surfaces were examined by optical microscopy, SEM and Talysurf profilometry.It was found that the ball-cratering test can differentiate between the wear resistances of materials with similar properties. The wear resistance of WCIs in the presence of silica sand increased with increasing the hardness of the wear sample and decreasing the size of carbides in the microstructure. Smaller silica sand particles caused less wear damage than larger silica sand particles, even though the smaller particles were slightly sharper than the larger ones. When silica sand and quartz particles of the same size were used, the angular quartz particles caused much higher wear than the rounded silica sand particles. Surface morphologies of the wear craters on the WCI samples were examined in an SEM and then compared with the morphologies of the worn surfaces from slurry pumps. It was found that the silica sand particles generated surface morphologies similar to those found in the worn slurry pumps. In these surfaces the matrix was preferentially worn out and hard carbides were protruding. Wear surface morphologies produced by the angular quartz particles were different. They consisted of numerous superimposed indents and the microstructure phases were not distinguishable. This indicates that the type of abrasive particles used in ball-cratering testing significantly affects the test outcomes in terms of wear rates and wear surface morphology. 相似文献
3.
The purpose of this work is to study the influence of the normal force (N), abrasive slurry concentration (C) and abrasive wear modes on the coefficient of friction in ball-cratering wear tests. Experiments were conducted with balls of AISI 52100 steel, an AISI H10 tool-steel specimen and abrasive slurries prepared with black silicon carbide (SiC) particles+distilled water. The tangential (T) and normal loads were monitored throughout the tests and the results have shown that: (i) the coefficient of friction behavior was independent of the normal force and (ii) both the concentrations of abrasive slurries and the subsequent action of the abrasive wear modes, generally, did not affect the behavior or magnitude of the coefficient of friction. 相似文献
4.
The purpose of this work was to conduct ball-cratering wear tests to monitor both normal and tangential forces. Balls of 52100 steel, a specimen of H10 tool steel and an abrasive slurry prepared with silicon carbide particles and distilled water were used. Optical microscopy analysis of the worn craters revealed the presence of only grooving abrasion. However, a more detailed analysis conducted by SEM has indicated that different degrees of rolling abrasion have also occurred along the grooves. The results also showed that the normal force plays an important role in the scattering of the values of the friction coefficient. 相似文献
5.
High-temperature abrasive wear testing of potential tool materials for thixoforming of steels 总被引:1,自引:0,他引:1
Yucel Birol 《Tribology International》2010,43(11):2222-286
High temperature abrasive wear performance of Inconel 617, Stellite 6 alloys and X32CrMoV33 hot work tool steel was investigated. The wear resistance of the latter is degraded at 750 °C due to its inferior oxidation resistance. Extensive oxidation co-occuring with abrasive wear at 750 °C leads to substantial material loss due to the lack of a protective oxide scale, sufficiently ductile to sustain the abrasion without extensive spalling. The wear resistance of the Inconel 617 and Stellite 6 alloys, on the other hand, improves at 750 °C owing to protective oxides that sustain the abrasion without spalling. 相似文献
6.
The effects of different tempering temperatures (300–600 °C) on abrasive wear resistance of mottled cast iron were studied. Abrasive wear tests were carried out using the rubber-wheel test on quartz sand and the pin test on Al2O3 abrasive cloths. The retained austenite content of the matrix was determined by X-ray diffraction. The wear surface of the specimens was examined by scanning electron microscopy for identifying the wear micromechanism. Bulk hardness and matrix hardness before and after the tests were measured. The results showed that in the two-body (pin-on-disc test) system, the main wear mechanism was microcutting and high matrix hardening was presented. The wear rates presented higher correlation with the retained austenite than with the bulk and matrix hardness. In the three-body system (sand–rubber wheel), the wear surfaces presented indentations due to abrasive rolling. The wear rates had better correlation with both the bulk and matrix hardness (before and after the wear test) than with the retained austenite content. There are two groups of results, high and low wear rates corresponding to each tribosystem, two-body abrasive wear and three-body abrasive wear, respectively. 相似文献
7.
A three-body abrasion test with a loose abrasive grain scattered on a variety of plastic counterface materials is conducted for Cercidiphyllum japonicum wood (katsura wood). The effect of the counterface material in rubbing with the katsura wood is investigated. The results show that a peak wear coefficient exists for the axial, tangential and radial sections of the katsura wood specimen when rubbed with a counterface material. The peak in the wear coefficient is also recognized in the plastic specimen experiments. The peaks in three-body abrasion experiments for both the katsura wood and plastic specimens are closely related to the variable of material yield stress. The peak on katsura wood specimen occurs when the yield stress of the counterface material is approximately twice as large as that of katsura wood, and the peak on the plastic specimen occurs when the yield stress of the counterface material is approximately the same as that of the specimen. The difference in the results between the katsura wood and plastic material could appear to be due to the change in embedding balance of the loose abrasive grain, which is likely affected by the porous wood structure. 相似文献
8.
In order to improve the finishing efficiency of the Magnetic Abrasive Finishing process, we proposed a new MAF process with renewable abrasive particles using compound magnetic finishing fluid circulatory system in this paper. This new finishing process has a circulating system that uses a conveyor belt to renew the mixed abrasive particles. This not only maintains the stability of the finishing but also ensures that the processing does not need to be interrupted. In this study, we investigated the magnetic field distribution, finishing force, and finishing behavior of the processing area. Furthermore, we designed experimental device to finish the sus304 stainless steel plate, to verify the feasibility of this process and understand its characteristics through processing experiments. Moreover, the influence of important process parameters, including magnetic particles, abrasive particles, conveyor belt line speed and working gap, on the surface quality of the workpiece is studied through the experiment. The experimental results indicate that the present process can achieve stable processing of the material surface without interruption, and the surface roughness of the sus304 stainless steel plate has been improved from 273 nm to 23 nm through this process. 相似文献
9.
探讨虚拟车削加工技术中,刀具尺寸磨损的机理,建立相关的数学模型。利用VC 编写程序,实现NC加工过程中刀具尺寸磨损的预测与控制。 相似文献
10.
A method is presented which enables a micro-scale abrasion test to be used to measure the wear performance of a coating over a small region, typically of millimetre dimensions, on a curved surface. The method is also applicable to studies of the wear resistance of any bulk material with a surface having complex curvature. The technique is illustrated by measurement of the intrinsic abrasion resistance of thin PVD coatings of TiZrN, ZrNbN and TiNbN on both flat and cylindrical tool steel and flat stainless steel substrates. The ability to measure the wear resistance of both a coating and its substrate, independently of each other and by a single test, is confirmed by experiment. 相似文献
11.
In this study the automated classification system, developed previously by the authors, was used to classify wear particles. Two kinds of wear particles, adhesive and abrasive, were classified. The wear particles were generated using a pin-on-disk tribometer. Various operating conditions of load, sliding time and abrasive grit size were applied to simulate adhesive and abrasive wear of different severity. SEM images of wear particles were acquired, forming a database for further analysis. The particle images were divided into eight groups or classes, each class representing different wear test conditions. All eight particle classes were first examined visually. Next, area, perimeter and elongation parameters were determined for each class and the parameters were statistically analysed. The automated classification system, based on particle surface texture, was then applied to all particle classes. The results of the automated particle classification were compared to those based on either the visual assessment of particle morphology or numerical parameter values. It was shown that the texture-based classification system was a more efficient and accurate way of distinguishing between various wear particles than classification based on size and shape of wear particles. It seems that the texture-based classification method developed has great potential to become a very useful tool in the machine condition monitoring industry. 相似文献
12.
Magnetorheological fluid-based finishing (MRFF) process is widely used for fabrication of optical material such as glasses, lenses, mirrors, etc. Performance of the process is significantly affected by the properties (size, concentration, hardness, etc.) of the constituents of MR fluid. MR fluids have been prepared by varying three abrasive particles mean sizes (4 µm, 6 µm and 9 µm) with carbonyl iron particles (CIPs) having average particles size of 6 µm. Yield stress of MR fluids is measured using a rheometer. The composition of the fluid has CIPs of 25%, abrasive 10% (by volume) and rest of the base medium (liquid). The yield stress was evaluated at magnetic flux density of 0.33 Tesla. It is observed that MR fluid having the same particle size of CIPs and abrasive particles exhibits higher yield stress as compared to other combinations. The lowest yield stress is observed in case of 9 µm abrasive particles size. A set of finishing experiments is carried out to understand the effect of relative size of magnetic particles and abrasive particles on surface roughness values. 相似文献
13.
掌握汽车运转情况,预防机械故障,消除安全隐患,实现对汽车故障的科学管理。在汽车修理厂现场抽取汽车有关部位油样,建立正常磨损工况、过度磨损工况、过热缺油工况和油液变质工况中粘着、滑动、切削、疲劳片状、球状、氧化磨粒的铁谱分析图形数据,经过不断完善、比较,建成模式识别基准;把采集的铁谱基片资料输入计算机,将其与巳有的识别基准进行比较,就可得到设备中各零件的磨损情况。实践证明,铁谱图形数据分析的故障和实际的故障是基本吻合的。对在役设备的润滑油或液压系统油中的各类磨损微粒进行微观分析,判断设备的早期故障。 相似文献
14.
The effect of various parameters in the process of three-body abrasive wear is analysed by fatigue theory. A formula for the wear volume in three-body wear is derived. Results indicate that this formula can basically reflect behaviour in three-body wear experiments. 相似文献
15.
Wear behaviour of some low alloyed steels under combined impact/abrasion contact conditions 总被引:9,自引:0,他引:9
The wear behaviour of some low alloyed steels has been investigated using a laboratory impeller–tumbler wear test equipment in which the steel samples are worn by angular granite particles under combined impact/abrasion wear contact conditions. The wear of the steels was evaluated by weight loss of the steel samples while the wear mechanisms of the steels were investigated by post-test light optical microscopy (LOM), scanning electron microscopy and energy dispersive X-ray analysis. The worn steel surfaces display a very rough surface topography with pronounced craters and distinct grooves caused by high and low angle impacts, i.e. abrasive wear, respectively. Besides, fragments of embedded granite particles are frequently observed in the worn surface of the steels. The wear of the steels tends to decrease with increasing steel hardness. However, instead of using the bulk hardness value the hardness of the worn/plastically deformed surface layer should be used when modelling the wear resistance. Further, the wear resistance of the steels was found to be dependent on the microstructure and chemical composition. Steels with similar type of microstructure show a linear decrease in weight loss with decreasing grain size and increasing carbon content. 相似文献
16.
Juuso Terva Tuomas Teeri Veli-Tapani Kuokkala Pekka Siitonen Jari Liimatainen 《Wear》2009,267(11):1821-1831
Wear testing equipment and tests used in research laboratories are often miniature or simplified versions of real applications. For example standardized ASTM dry sand rubber wheel abrasion test G 65 and pin abrasion test G 132 are widely used to study materials’ abrasion wear resistance. The test results, however, do not always correlate too well with the results obtained from real wear conditions. One reason for this is, for example, that in the crushing applications of mining industry the abrasive size is usually much larger than that used in the laboratory wear tests. To study the abrasive wear caused by larger size gravel, new three-body abrasion test equipment was therefore constructed. The equipment uses the pin-on-disk principle with free abrasive particles of sizes up to 10 mm. During the test the pin is repeatedly pressed against a fixed amount of abrasive that is rotating with the disk having confining walls. As the pin is prevented from touching the counterbody, only the abrasive acts as the wearing agent.Three steels of different hardnesses were cross-tested as pin–disk pairs and as pins against a rubber disk using three igneous rock gravels with different crushability properties as abrasives. The wear was measured as mass loss from both the pin and the disk, and the rock comminution was measured by sieving. The results indicate that the mechanism of wear is greatly affected by the hardness of the counterbody. When using large size abrasives, the rate of comminution is also a very important factor that can significantly affect the wear test results. 相似文献
17.
研究了挟沙水流对混凝土的冲磨破坏机理及主要影响因素,分析了常用的混凝土冲磨试验方法,提出了旋转喷射式冲磨试验原理,并根据此原理研制了旋转喷射式混凝土抗冲耐磨试验机。与现有冲磨机相比较,该试验机的模拟冲刷过程更接近混凝土真实工况,并且可以实现不同冲刷条件下一定冲刷速度范围内的任意速度调节,冲刷速度高,冲磨效果好,能够有效地对不同配合比混凝土的抗冲磨性能作出比较。 相似文献
18.
The abrasive wear resistance of starch consolidated (SC) and super solidus liquid phase sintered (SLPS) M3/2 high speed steel (HSS) samples have been evaluated by a two-body micro-abrasion test (low stress abrasion), using 6 μm diamond abrasive particles, and a three-body abrasion test (high stress abrasion), using significantly larger abrasive particles of blast furnace slag (600 HV) and silicon carbide (2400 HV), respectively. In the tests a commercial powder metallurgical (PM) HSS was used as a reference material.The results show that the microstructure of the SC and SLPS HSS samples is strongly dependent on the sintering temperature used. With increasing temperature the microstructure ranges from a porous (5% porosity) relatively fine grained low temperature sintered microstructure to a fully dense relatively coarse grained high temperature sintered microstructure with eutectic carbides/carbide networks. However, despite the pronounced microstructural differences displayed by the as-sintered HSS microstructures these show a relatively high abrasive wear resistance, comparable with that of a HIPed HSS reference, both under low and high stress abrasion contact conditions. The characteristic features of the low and high temperature sintered microstructures, i.e. the pores and coarse eutectic carbides/carbide networks, only show a limited impact on the wear rate and the wear mode (dominant wear mechanism). The results obtained imply that near net shaped components manufactured by starch consolidation and super solidus liquid phase sintering might be of interest in tribological applications. 相似文献
19.
We report simultaneous, time-resolved measurements of photon emission, electron emission, and frictional force during the abrasion of single crystal MgO with a diamond stylus in vacuum. We present evidence for the luminescence being primarily due to deformation and the electron emission being primarily due to fracture. Time-resolved measurements of all three signals show strong fluctuations which reflect stick-slip-like behavior. These measurements indicate enhanced deformation activity at the beginning of a stick event, with predominant fracture activity beginning some milliseconds later. These emissions provide insight into the processes responsible for catastrophic failure of ceramics in wear applications. 相似文献