首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
A site control technique for individual InAs quantum dots (QDs) formed by self-assembling has been developed, using scanning electron microscope (SEM) assisted nano-deposition and metal organic vapor phase epitaxy (MOVPE). In a first step we characterize a device with randomly distributed InAs QDs on InP, using resonant tunneling and transmission electron microscopy (TEM). Secondly, we use nano-scale deposits, created at the focal point of the electron beam on an InP based heterostructure, as “nano growth masks”. Growth of a thin InP layer produces nano-holes above the deposits. The deposits are removed by oxygen plasma etching. When InAs is supplied on this surface, QDs are self-assembled at the hole sites, while no InAs dots are observed in the flat surface region. A vertical single electron tunneling device is proposed, using the developed technique.  相似文献   

2.
An electron-microscopy study of GaAs structures, grown by molecular-beam epitaxy, containing two coupled layers of InAs semiconductor quantum dots (QDs) overgrown with a thin buffer GaAs layer and a layer of low-temperature-grown gallium arsenide has been performed. In subsequent annealing, an array of As nanoinclusions (metallic QDs) was formed in the low-temperature-grown GaAs layer. The variation in the microstructure of the samples during temperature and annealing conditions was examined. It was found that, at comparatively low annealing temperatures (400–500°C), the formation of the As metallic QDs array weakly depends on whether InAs semiconductor QDs are present in the preceding layers or not. In this case, the As metallic QDs have a characteristic size of about 2–3 nm upon annealing at 400°C and 4–5 nm upon annealing at 500°C for 15 min. Annealing at 600°C for 15 min in the growth setup leads to a coarsening of the As metallic QDs to 8–9 nm and to the formation of groups of such QDs in the area of the low-temperature-grown GaAs which is directly adjacent to the buffer layer separating the InAs semiconductor QDs. A more prolonged annealing at an elevated temperature (760°C) in an atmosphere of hydrogen causes a further increase in the As metallic QDs’ size to 20–25 nm and their spatial displacement into the region between the coupled InAs semiconductor QDs.  相似文献   

3.
The growth of InAs on GaAs(0 0 1) is of great interest primarily due to the self-assembly of arrays of quantum dots (QDs) with excellent opto-electronic properties. However, a basic understanding of their spontaneous formation is lacking. Advanced experimental methods are required to probe these nanostructures dynamically in order to elucidate their growth mechanism. Scanning tunneling microscopy (STM) has been successfully applied to many GaAs-based materials grown by molecular beam epitaxy (MBE). Typical STM–MBE experiments involve quenching the sample and transferring it to a remote STM chamber under arsenic-free ultra-high vacuum. In the case of GaAs-based materials grown at substrate temperatures of 400–600 °C, operating the STM at room temperature ensures that the surface is essentially static on the time scale of STM imaging. To attempt dynamic experiments requires a system in which STM and MBE are incorporated into one unit in order to scan in situ during growth. Here, we discuss in situ STM results from just such a system, covering both QDs and the dynamics of the wetting layer.  相似文献   

4.
Low‐dimensional III–V semiconductors have many advantages over other semiconductors; however, they are not particularly stable under physiological conditions. Hybridizing biocompatible organic molecules with advanced optical and electronic semiconductor devices based on quantum dots (QDs) and quantum wires could provide an efficient solution to realize stress‐free and nontoxic interfaces to attach larger functional biomolecules. Monitoring the modifications of the optical properties of the hybrid molecule–QD systems by grafting various types of air‐stable diazonium salts onto the QD structures surfaces provides a direct approach to prove the above concepts. The InAs/GaAs QD structures used in this work consist of a layer of surface InAs QDs and a layer of buried InAs QDs embedded in a wider‐bandgap GaAs matrix. An enhancement in photoluminescence intensity by a factor of 3.3 from the buried QDs is achieved owing to the efficient elimination of the dangling bonds on the surface of the structures and to the decrease in non‐radiative recombination caused by their surface states. Furthermore, a narrow photoluminescence band peaking at 1620 nm with a linewidth of 49 meV corresponding to the eigenstates interband transition of the surface InAs QDs is for the first time clearly observed at room temperature, which is something that has rarely been achieved without the use of such engineered surfaces. The experimental results demonstrate that the hybrid molecule–QD systems possess a high stability, and both the surface and buried QDs are very sensitive to changes in their surficial conditions, indicating that they are excellent candidates as basic sensing elements for novel biosensor applications.  相似文献   

5.
GaAs/InAs quantum dot (QD) heterostructures prepared by metalloorganic chemical vapor deposition (MOCVD) are investigated. It is established that the introduction of isovalent bismuth doping during the growth of InAs QD layer results in the suppression of the nanocluster coalescence and favors the formation of more uniform QDs. Bismuth itself is virtually not incorporated into the dots, its role being mainly in limiting the migration mobility of atoms at the surface of the growing layer. A method for investigating the morphology of buried layers of InAs QDs in GaAs matrix by atomic-force microscopy is developed; it relies on the removal of the cap layer by selective chemical etching. The photoluminescence (PL) and photoelectric sensitivity spectra of the fabricated heterostructures and their relation to the morphology of the QD layer are studied. In doped structures, PL and selective photosensitivity owing to the QDs are observed at a wavelength of 1.41 µm with the linewidth of 43 meV at room temperature. Some of the morphological features and photoelectronic properties of the MOCVD-grown heterostructures are related to the formation of a transitional layer at the GaAs/InAs QD interface due to the diffusion-induced mixing of the components.  相似文献   

6.
In this paper, we present the growth and photoluminescence (PL) results of InAs quantum dots (QDs) on a p-type porous GaAs (001) substrate. It has been shown that critical layer thickness of InAs overgrowth on porous GaAs has been enhanced compared to that deposited on nominal GaAs. Using porous GaAs substrate, growth interruption and depositing 10 atomic monolayer (ML) In0.4Ga0.6As on InAs QDs, photoluminescence measured at 10 K exhibits an emission at 0.739 eV (∼1.67 μm) with an ultranarrow full width at half maximum (FWHM) of 16 meV. This emission represents the longer wavelength obtained up to date to our knowledge and has been attributed to the radiative transition in the InAs QDs.  相似文献   

7.
Electron and hole emission from states of a ten-layer system of tunneling-coupled vertically correlated InAs/GaAs quantum dots (QDs) is studied experimentally by capacitance—voltage measurements and deep-level transient spectroscopy. The thickness of GaAs interlayers separating sheets of InAs QDs was ≈3 nm, as determined from transmission electron microscope images. It is found that the periodic multimo-dal DLTS spectrum of this structure exhibits a pronounced linear shift as the reverse-bias voltage U r applied to the structure is varied. The observed behavior is a manifestation of the Wannier—Stark effect in the InAs/GaAs superlattice, where the presence of an external electric field leads to the suppression of coupling between the wave functions of electron states forming the miniband and to the appearance of a series of discrete levels called Wannier—Stark ladder states.  相似文献   

8.
The structural and the optical properties of InAs layers grown on high index GaAs surfaces by molecular beam epitaxy are investigated in order to understand the formation and the self-organization of quantum dots (QDs) on novel index surfaces. Four different GaAs substrate orientations have been examined, namely, (111)B, (311)A, (311)B and (100). The (100) surface was used as a reference sample. STM pictures exhibit a uniform QD coverage for all the samples with the exception of (111)B, which displays a surface characterized by very large islands and where STM pictures give no evidence of QD formation. The photoluminescence (PL) spectra of GaAs (100) and (311) samples show typical QD features with PL peaks in the energy range 1.15-1.35 eV with comparable efficiency. No significant quenching of PL up to temperatures as high as 70K was observed. These results suggest that the high index substrates are promising candidates for production of high quality self-assembled QD materials for application to photonics.  相似文献   

9.
为了获得波长长、均匀性好和发光效率高的量子点,采用分子束外延(MBE)技术和S-K应变自组装模式,在GaAs(100)衬底上研究生长了三种InAs量子点。采用MBE配备的RHEED确定了工艺参数:As压维持在1.33×10-5Pa;InAs量子点和In0.2Ga0.8As的生长温度为500℃;565℃生长50nmGaAs覆盖层。生长了垂直耦合量子点(InAs1.8ML/GaAs5nm/InAs1.8ML)、阱内量子点(In0.2Ga0.8As5nm/InAs2.4ML/In0.2Ga0.8As5nm)和柱状岛量子点(InAs分别生长1.9、1.7、1.5ML,停顿20s后,生长间隔层GaAs2nm)。测得对应的室温光致发光(PL)谱峰值波长分别为1.038、1.201、1.087μm,半峰宽为119.6、128.0、72.2nm、相对发光强度为0.034、0.153、0.29。根据PL谱的峰位、半峰宽和相对发光强与量子点波长、均匀性和发光效率的对应关系,可知量子点波长有不同程度的增加、均匀性越来越好、发光效率显著增强。  相似文献   

10.
Reflection high-energy electron diffraction and scanning tunneling microscopy have been used to study the growth of InAs on GaAs (111)A by molecular beam epitaxy. In contrast to the 3-D growth mode observed for InAs on GaAs (001), there is no evidence for 3-D island formation on the (111)A surface. The precise control of the 2-D growth of InAs layers makes it possible to probe the early stages of strain relaxation by imaging misfit dislocations by STM. The band gap and position of the surface Fermi level of ultra-thin InAs films on GaAs (111)A have also been obtained by scanning tunneling spectroscopy as a function of InAs thickness. The band gap of InAs is established after about 10 MLs of InAs and an accumulation layer is formed at the surface after the growth of 20 MLs of InAs.  相似文献   

11.
Electroluminescence and absorption spectra of a ten-layer InAs/GaAs quantum dot (QD) superlattice built in a two-section laser with sections of equal length is experimentally studied at room temperature. The thickness of the GaAs spacer layer between InAs QD layers, determined by transmission electron microscopy, is ∼6 nm. In contrast to tunnel-coupled QDs, QD superlattices amplify the optical polarization intensity and waveguide absorption of the TM mode in comparison with the TE mode. It is found that variations in the multimodal periodic spectrum of differential absorption of the QD superlattice structure are strongly linearly dependent on the applied electric field. Differential absorption spectra exhibit the Wannier-Stark effect in the InAs/GaAs QD superlattice, in which, in the presence of an external electric field, coupling of wave functions of miniband electron states is suppressed and a series of discrete levels called the Wannier-Stark ladder states are formed.  相似文献   

12.
Structural and optical properties of InAs quantum dots (QDs) deposited on the surface of a thick InGaAs metamorphic layer grown on a GaAs substrate have been studied. The density and lateral size of QDs are shown to increase in comparison with the case of QDs grown directly on a GaAs substrate. The rise of In content in the InGaAs layer results in the red shift of the photoluminescence (PL) line, so that with 30 at % indium in the metamorphic layer the PL peak lies at 1.55 μm. The PL excitation spectroscopy of the electronic spectrum of QDs has shown that the energy separation between the sublevels of carriers in QDs decreases as the In content in the InGaAs matrix increases. __________ Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 38, No. 7, 2004, pp. 867–871. Original Russian Text Copyright ? 2004 by Kryzhanovskaya, Gladyschev, Blokhin, Musikhin, Zhukov, Maksimov, Zakharov, Tsatsul’nikov, Ledentsov, Werner, Guffart, Bimberg.  相似文献   

13.
The transition mechanism of InAs quantum dot (QD) to quantum ring (QR) was investigated. After the growth of InAs QDs, a thin layer of GaAs was overgrown on the InAs QD and the sample was annealed at the same temperature for a period of time. It was found that the central part of the InAs islands started to out diffuse and formed ring shape only after a deposition of a critical thickness (1 ~ 2 nm) of GaAs capped layer depending on the size of InAs QDs. This phenomenon was revealed by photoluminescence measurement and atomic force microscopy image. It is suggested that the strain energy provided by the GaAs overgrown layer is responsible for the InAs to diffuse out of the island to form QR.  相似文献   

14.
The dependence of properties of quantum dot (QD) arrays in an InAs/GaAs system on the InAs growth rate has been investigated theoretically and experimentally. The derived kinetic model of the formation of coherent nanoislands allows the calculation of the average size, surface density of islands, and wetting layer thickness as functions of the growth time and conditions. Optical properties of InAs/GaAs QDs have been studied for the case of two monolayers (ML) of the material deposited at different growth rates. Predictions of the theoretical model are compared with the experimental data. It is shown that with two ML of the deposited material the characteristic lateral size of QDs decreases and the thickness of the residual wetting layer increases with rising growth rate.  相似文献   

15.
We show that InAs quantum dots (QDs) can be grown by molecular beam epitaxy (MBE) with an ultralow density of sin 107 cm?2 without any preliminary or post-growth surface treatment. The strain-induced QD formation proceeds via the standard Stranski-Krastanow mechanism, where the InAs coverage is decreased to 1.3–1.5 monolayers (MLs). By using off-cut GaAs (100) substrates, we facilitate the island nucleation in this subcritical coverage range without any growth interruption. The QD density dependences on the InAs coverage are studied by photoluminescence, atomic force microscopy, transmission electron microscopy, and are well reproduced by the universal double exponential shapes. This method enables the fabrication of InAs QDs with controllable density in the range 107–108 cm?2, exhibiting bright photoluminescence.  相似文献   

16.
研究了分子束外延中引入原子氢后 ,原子氢对外延层表面形貌特征形成的诱导作用 .原子力显微镜 (AFM)测试表明 ,在 (311) A Ga As表面 ,原子氢导致了台阶状形貌的形成 ,在这种台阶状表面进一步生长了 In As量子点 ,测试结果表明其位置分布的有序化受到台阶高度和台阶周期的制约 .这为实现量子点结构的有序化控制生长提供了一定的实验参考 .  相似文献   

17.
Self-assembled quantum dots (QDs) in double-layer InAs/GaAs structures are studied by resonant photoluminescence and photoluminescence excitation spectroscopy. A weakly correlated (50%) double-layer system with an array of vertically coupled QDs (asymmetric quantum-dot molecules) was formed in a structure consisting of the 1.8-monolayer-thick first and the 2.4-monolayer-thick second InAs layers separated by 50 monolayers of GaAs. The nature of discrete quantum states in this system was studied and resonances corresponding to vertically coupled QDs were clearly observed for the first time.  相似文献   

18.
This article reviews the recent progress in the growth and device applications of InAs/InP quantum dots (QDs) for telecom applications. Wavelength tuning of the metalorganic vapor-phase epitaxy grown single layer and stacked InAs QDs embedded in InGaAsP/InP (1 0 0) over the 1.55-μm region at room temperature (RT) is achieved using ultra-thin GaAs interlayers underneath the QDs. The GaAs interlayers, together with reduced growth temperature and V/III ratio, and extended growth interruption suppress As/P exchange to reduce the QD height in a controlled way. Device quality of the QDs is demonstrated by temperature-dependent photoluminescence (PL) measurements, revealing zero-dimensional carrier confinement and defect-free InAs QDs, and is highlighted by continuous-wave ground-state lasing at RT of narrow ridge-waveguide QD lasers, exhibiting a broad gain spectrum. Unpolarized PL from the cleaved side, important for realization of polarization insensitive semiconductor optical amplifiers, is obtained from closely stacked QDs due to vertical electronic coupling.  相似文献   

19.
Photoluminescence (PL) spectra of InAs/GaAs heteroepitaxial structures with quantum dots (QDs) have been studied. The structures were grown by submonolayer migration-enhanced epitaxy on vicinal substrates with the amount of deposited InAs close to the critical value of 1.8 monolayer (ML). The origin and evolution of the structure of PL spectra were studied in relation to the direction and angle of misorientation, temperature, and power density and spectrum of the exciting radiation. A blue shift and narrowing of the PL band with increasing misorientation angle was established experimentally. The fact that QDs become smaller and more uniform in size is explained in terms of a lateral confinement of QDs on terraces with account taken of the step bunching effect. The temperature dependences of the positions and full widths at half-maximum (FWHM) of PL bands are fundamentally different for isolated and associated QDs. The exciton ground states contribute to all low-temperature spectral components. The excited exciton state contributes to the recombination emission from QDs, as evidenced by the temperature dependence of the integrated intensity of the PL bands. A quantitative estimate is given of the electronic structure of different families of InAs QDs grown on GaAs substrates misoriented by 7° in the [001] direction.  相似文献   

20.
We have grown single, 10 and 20 InAs/GaAs quantum dots (QDs) multilayers by molecular beam epitaxy in Stranski-Krastanov growth mode with and without growth interruption. Multilayer structures of InAs QDs have been studied by photoluminescence (PL) and atomic force microscopy (AFM) techniques. Between 1 and 10 layers of QDs, 10 K PL shows a shift energy, and a PL linewidth reduction. Moreover, AFM image of the 10 layers sample shows that the InAs QDs size remains constant and almost uniform when the growth is without interruption. These effects are attributed to electronic coupling between QDs in the the columns. However, we show the possibility of extending the spectral range of luminescence due to InAs QDs up to 1.3 μm. Realisation of such a wavelength emission is related to formation of lateral associations or coupling of QDs (LAQDs or LCQDs) during InAs deposition when growth interruption (20 s) is used after each InAs QDs layer deposition. The growth interruption applied after the deposition of the InAs layer allows the formation of well-developed InAs dots (large dot size).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号