首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
基于PVDF膜的QCM对DMMP的气敏特性研究   总被引:1,自引:2,他引:1  
神经性毒剂是化学战剂的重要分支.为了检测神经性毒剂模拟剂甲基膦酸二甲酯(DMMP),使用毛细管在压电石英晶体(QCM)的电极上滴涂上不同质量的聚偏氟乙烯(PVDF)溶液,干燥后作为敏感膜.室温下测试QCM对不同浓度的DMMP的响应情况,发现QCM的频率变化与气体浓度有着良好的线性关系.该实验结果表明,PVDF可以作为检测DMMP的很好的敏感材料.  相似文献   

2.
沸石分子筛修饰的QCM类神经毒气传感器   总被引:1,自引:3,他引:1  
研究了Cu2 -Beta型纳米分子筛对类神经毒剂DMMP有机气体的敏感特性,并结合高灵敏的石英谐振微天平(QCM)研制了DMMP气体的传感器.研究结果表明,选择Cu2 -Beta纳米分子筛作为敏感膜对DMMP气体的检测灵敏度大大提高,达到14.481 1 Hz/lg(C/ppm).在0.2 ppm DMMP气体浓度下,传感器的响应时间和恢复时间分别为40 s和100 s,响应达到103Hz.同时经过高温和水汽吹扫脱附处理,该传感器表现了较好的重复性.  相似文献   

3.
以InCl3·4H2O、草酸和氢氧化钠为原料,采用水热-退火路径,合成出了In2O3纳米线.X射线粉末衍射(XRD)和扫描电子显微镜(SEM)表征结果表明:合成产物为立方相的In2O3纳米线,其直径约为30-50 nm,长径比超过40.气敏性能测试结果表明,以该法合成的In2O3纳米线对NO2灵敏度高,选择性好,响应恢复快,可以检测1 ppm(i.e.×10-6)的NO2,是一种应用前景良好的NO2敏感材料.  相似文献   

4.
主要研究Silicate-1型纳米分子筛对类神经毒气有机气体甲基磷酸二甲酯(DMMP)的敏感特性,并结合高灵敏度的石英谐振天平(QCM)研制了DMMP气体传感器.采用Silicate-1型纳米分子筛作为敏感膜材料分别对不同浓度的DMMP气体进行检测.QCM传感器随着气体浓度的增加,响应时间增加,气体吸附量增加;当DMM...  相似文献   

5.
基于分子筛薄膜探测神经类毒气的传感器研究   总被引:3,自引:0,他引:3  
采用ZSM-5分子筛材料对神经类毒剂沙林的相似物甲基磷酸二甲脂(DMMP)气体进行了测试。分子筛材料因为具有选择性吸附分子的能力常被用来作为气体敏感材料,但因为其神经类气体极性较强,被吸附后难于解吸附,因此,分子筛材料很少用于检测神经类气体。利用合成的ZSM-5纳米分子筛作为吸附神经类气体DMMP的敏感材料,将其涂布在2个石英晶体微天平(QCM)上进行差频测试,以减小外界的干扰,并提出了用交变电场进行极性分子解吸附的新方法。DMMP气体的探测最小体积分数达到1×10-6,响应时间和解吸附时间分别小于20 s和90 s。  相似文献   

6.
聚甲基[3-(2-羟基-5-氟)苯基]丙基硅氧烷的合成及其应用   总被引:1,自引:0,他引:1  
以对氟苯酚和3-溴丙烯为原料,无水乙醇为溶剂,经O-烷化、克莱森重排和硅氢加成得到了有机磷毒剂敏感材料聚甲基[3-(2-羟基-5-氟)苯基]丙基硅氧烷.研究了各因素对各步反应的影响,得到的较佳工艺条件为将对氟苯酚和溴丙烯于55℃回流4 h得到中间产物对氟烯丙基苯基醚(Ⅰ),接着将Ⅰ在200℃ 保温7 h得到2-烯丙基_4-氟苯酚(Ⅱ),然后将Ⅱ和含氢硅油在100℃反应4 h.利用FT-IR和1HNMR对各级反应产物结构进行了表征.将聚甲基[3-(2-羟基-5-氟)苯基]丙基硅氧烷料涂覆在QCM传感器上研究了其对有机磷毒剂模拟剂DMMP的响应特性.结果表明传感器响应迅速,对干扰气体、水和乙醇的响应低于含有苯酚官能团的聚合材料.  相似文献   

7.
研究了以25-(硫代烷基烷氧基)-对叔丁基杯[4]芳烃自组装分子作为声表面波(SAW)化学传感器敏感膜材料的SAW双通道延迟线传感器对DMMP检测的敏感特性.实验结果表明杯芳烃-SAW传感器对DMMP有高的灵敏度、好的响应特性和重复性.  相似文献   

8.
主要介绍了ZnO纳米棒修饰的石英晶体微天平(QCM)气体传感器的制备与测试。采用两步法在石英晶振片表面制备直径为100 nm的ZnO纳米棒敏感膜,构成QCM NH3传感器。检测系统为自主研发的基于LabVIEW平台的QCM气体传感器频率测试软件。检测NH3的体积分数为5×10-6~50×10-6,响应时间均在10 s以内,最大频差值为10.9 Hz,响应最大频差值与NH3体积分数呈现良好的线性关系。室温条件下,ZnO纳米棒敏感膜可以完全实现吸附解吸过程,具有可逆性。该传感器性能稳定,响应灵敏,具有重复性。  相似文献   

9.
采用水热合成的方法,以氯化钯(PdCl2)为原料,十二烷基三甲基溴化铵(CTAB)为分散剂,制备得到了四方结构的PdO材料,并利用X-射线衍射(XRD)、电子扫描显微镜(SEM)对得到的PdO颗粒进行了表征与分析.将制得的PdO材料制成传感器,在静态配气系统中测得了PdO材料对挥发性有机化合物(VOC)气体甲醛的敏感特性.结果表明,该PdO材料能够在室温(25℃)下对甲醛有很好的响应特性,对10×10-6甲醛响应达到3.90,测试浓度为0.1×10-6时,响应可达到1.84.  相似文献   

10.
利用喷墨打印技术沉积生物高分子溶液的方法,打印出金的梳状微电极的阵列图形,并采用NaX型沸石分子筛作为敏感膜,研制了探测神经类毒气沙林的相似物DMMP气体的阻抗型传感器。电极图形使用简单的绘图软件autoCAD画出,通过简单改进过的办公用喷墨打印机在金衬底上打印一层自组装膜的阻挡层,经过湿法刻蚀后得到了梳状微电极阵列。将制得的传感器对1ppm(即1×10-6)DMMP气体进行检测,测得在0.01Hz处,其电阻的相对变化值为10.7%。与传统MEMS工艺相比较,喷墨打印方法制备传感器具有工艺步骤简化,成本低,可在柔性等不同材料上制作等优点,有着广泛的应用前景。  相似文献   

11.
Our major goal in developing intelligent quality sensors is to detect bacterial pathogens such as Salmonella in the packaged beef. Olfactory sensing of specific volatile organic compounds released by the bacterial pathogens is one of the unique ways for determining contamination in food products. This work aims at developing a biomimetic piezoelectric olfactory sensor for detecting specific gases (alcohols) at low concentrations.The computational simulation was used to determine the biomimetic peptide-based sensing material to be deposited on the quartz crystal microbalance (QCM) sensor. Tripos/Sybyl®8.0 was used to predict the binding site of an olfactory receptor and determine the binding affinity as well as orientation of the selected ligands (specific molecules) to the olfactory receptor. The designed polypeptide sequence based on the simulation program was synthesized and used as a sensing layer in the QCM crystal. The developed QCM sensors were sensitive to 1-hexanol as well as 1-pentanol as predicted by the simulation algorithm. The estimated lower detection limits of the QCM sensors for detecting 1-hexanol and 1-pentanol were 2-3 ppm and 3-5 ppm, respectively. This study demonstrates the applicability of simulation-based peptide sequence that mimics the olfactory receptor for sensing specific gases.  相似文献   

12.
In this study, the regioregular poly (3-hexyl thiophene) (rr-P3HT) based piezoelectric sensors were developed and evaluated to detect alcoholic volatile organic compounds (VOCs) associated with spoiled and Salmonella typhimurium contaminated packaged beef headspace. The drop coating technique was used to deposit thin films of rr-P3HT on both the sides of quartz crystal microbalance (QCM) electrode. The QCM polymer sensors were found to provide repeatable and reproducible sensor response to alcohol VOCs with a fast recovery (<2 min) at room temperature (25 °C). The principal component analysis on the sensors sensitivities was performed to discriminate the sensed alcohol VOCs, namely: 3-methyl-1-butanol from 1-hexanol. The QCM polymer sensors demonstrated selective response to low concentration of 3-methyl-1-butanol (average estimated lowest detection limit (LDL): 4.35 ppm) and to 1-hexanol (average estimated LDL: 3.20 ppm). The 30 days storage study performed on QCM sensors showed identical sensitivity responses for sensing 3-methyl-1-butanol and 1-hexanol at low concentrations.  相似文献   

13.
Flammable gas sensors are essential in occupational health and safety to prevent fire or explosion in gas facilities and underground mining. Our early study demonstrated that ionic liquid (IL)/quartz crystal microbalance (QCM) gas sensors and sensor arrays were excellent for the detection of various organic vapors at both room temperature and elevated temperatures. In this paper, we developed a general method that significantly enhanced the sensitivity of the IL/QCM sensors for flammable gases detection by immobilizing IL on a conductive polymer polyaniline (PAn) template. Studies were performed to optimize the PAn oxidation states, thickness, and IL concentrations. Results showed that the sensitivity increased with increasing the PAn film thickness and the amount of IL immobilized within the PAn film. The sensitivity depended also on the oxidation state and doping state of PAn. With doped and partially oxidized PAn (emeraldine salt) the IL/QCM sensor showed the best performance. The current detection limit for methane was as low as about 115 ppm at room temperature. The sensitivity also depended on the structure of the IL used. Among the four ILs tested, two of them showed excellent sensitivities after being immobilized in the PAn film.  相似文献   

14.
A novel formaldehyde sensor based on nanofibrous polyethyleneimine (PEI)/bacterial cellulose (BC) membranes coated quartz crystal microbalance (QCM) has been successfully fabricated. The nanoporous three-dimensional PEI/BC membranes are composed of nanofibers with diameter of 30-60 nm. The sensor showed high sensitivity with good linearity and exhibited a good reversibility and repeatability towards formaldehyde in the concentration range of 1-100 ppm at room temperature. Moreover, the results showed that the sensing properties were mainly affected by the content of PEI component in nanofibrous membranes, concentration of formaldehyde and relative humidity. Additionally, the nanofibrous PEI/BC membrane coated QCM sensors exhibited a good selectivity to formaldehyde when tested with competing vapors. The simple and feasible method to prepare and coat the PEI/BC sensing membranes on QCM makes it promising for mass production at a low cost.  相似文献   

15.
We report application of the PEGylated lipids (PEG lipopolymers) containing disulphide as supports for sensing films for quartz crystal microbalance (QCM) odor sensors. The materials are binding covalently to the surface of gold QCM sensor electrode creating self-assembled cushion. Additional amounts of lipid or lipid-derived materials can be physisorbed on that chemisorbed coating. Both processes do not require much labor and can be performed with minimum instruments in a simple process. The sensors fabricated with the chemisorbed supports are more sensitive to the tested odorants than their non-supported counterparts. Enhanced sensitivity is derived from higher fluidity of the supported films in comparison to the non-supported ones. Discrimination capability among odorants is also better for the sensors with chemisorbed supports than for the non-supported ones—there are no overlaps between the sample groups and the samples are clustered closely within the groups. Overall, the studied supported sensors introduce interesting properties that can be utilized in the odor sensing systems using QCM sensors.  相似文献   

16.
Surface plasmon resonance (SPR) and quartz crystal microbalance (QCM) have been known independently as surface sensitive analytical devices capable of label-free and in situ bioassays. In this study a SPR device and a 10 MHz QCM sensor are employed for the study of human IgE and anti-human IgE-binding reactions upon immobilizing the latter on the gold electrodes. The SPR and QCM response curves to the antibody immobilization and antigen binding are similar in shape but different in time scale, reflecting different resonation principles. Through optimization of the anti-human IgE coating, both the SPR and QCM sensors could detect IgE in a linear range from 5 to 300 IU/ml. Although the intrinsic sensitivity of the SPR device is five times of the 10 MHz QCM, the IgE detection sensitivity of the two methods is, however, different only in a factor of 2. The acceptable QCM sensitivity for the IgE detection is attributed to the fact that QCM measures the sum of molar mass of a protein layer and the entrapped water. Although both the devices use open, stand still liquid cell, and all the measurements are performed at room temperature, the SPR reproducibility and reliability are better than QCM, as the QCM frequency is more sensitive to temperature fluctuations, press changes and mechanical disturbances.  相似文献   

17.
A novel copolymer P(MBTVBC-co-VIM) was designed and successfully synthesized for the fabrication of copolymer-coated QCM sensors to detect the heavy metal ions in aqueous solution. The copolymer P(MBTVBC-co-VIM) contains many nitrogen (N) and sulfur (S) atoms in the side groups as electron donors, which can easily form complexes with heavy metal ions. The strong interaction between the S atom and Au electrode of quartz crystal further assures the stability of copolymer thin films on the quartz crystal surface in aqueous media. The QCM results indicated that the P(MBTVBC-co-VIM)-coated sensor exhibited high sensitivity, stability and selectivity for the detection of Cu2+ in aqueous solution. The lowest detection limit can reach 10 ppm Cu2+ in aqueous solution, which resulted in the frequency shift of 3.0 Hz (ΔF3/3). The P(MBTVBC-co-VIM)-coated QCM sensors had porous surface morphologies as revealed by AFM investigation. Such porous structures enhanced the surface areas of the copolymer thin films, which increased the contacting probability of N and S atoms with heavy metal ions in solution and improved the detection sensitivity of the copolymer-coated QCM sensors.  相似文献   

18.
A novel highly stable and sensitive humidity sensor based on bacterial cellulose (BC) coated quartz crystal microbalance (QCM) has been successfully fabricated. The results showed that the sensors possessed good sensing characteristics by increasing more than two orders of magnitude with increasing relative humidity (RH) from 5 to 97%, and the Log(Δf) showed good linearity (20-97% RH). The sensitivity of sensors coated with BC membranes was four times higher than that of the corresponding cellulose membranes at 97% RH. In addition, the sensor sensitivity is greatly enhanced by increasing the coating load of the BC membranes with more absorption sites in the sensing membranes. Moreover, the experimental results prove that the resultant sensors exhibited a good reversible behavior and good long term stability. Herein, not only a novel and low-cost humidity sensor material was exploited, but also a new application area for BC nanofibrous membranes was opened up.  相似文献   

19.
叙述了用沸石分子筛颗粒膜作为敏感材料涂覆于石英微量天平(QCM)的高精度气体传感器。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号