首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Temperature dependences (temperature range T = 0.5?300 K) of resistivity in the plane of layers and in the direction perpendicular to the layers, and the galvanomagnetic effects in undoped and doped Bi2Te3 single crystals are studied (magnetic field H < 80 kOe, T = 0.5?4.2 K). It is shown that upon doping of Bi2Te3 with the Group III atoms (In and B), conductivity anisotropy increases mainly due to an increase in resistivity in the direction perpendicular to the layers. This fact makes it possible to assume that the atoms of these impurities are incorporated mainly into the van der Waal gaps between the layers upon doping. It is also revealed that, upon doping of Bi2Te3 with In and B, the temperature dependence of conductivity becomes weaker, which indicates an increase in the role of scattering by defects in scattering mechanisms. The concentrations and mobilities of charge carriers, values of the Hall factor conditioned by the anisotropy of effective masses and orientation of ellipsoids with respect to crystallographic axes, areas of the extreme section of the Fermi surface by the plane perpendicular to the direction of the magnetic field, and the Fermi energy are evaluated.  相似文献   

2.
Reflectance spectra of single crystals of Bi2Te3-Sb2Te3 solid solutions containing 0, 10, 25, 40, 50, 60, 65, 70, 80, 90, 99.5, and 100 mol % of Sb2Te3 have been studied in the range of 400–4000 cm−1 at the temperature T = 291 K and with orientation of the vector of the electric-field strength E perpendicular to the trigonal axis of the crystal C 3 (EC 3). The shape of the spectra is characteristic of plasma reflection; the spectra include the features in the range 1250–3000 cm−1 corresponding to the optical band gap E g opt. The features become more pronounced as the content of Bi2Te3 is increased to 80 mol % in the composition of the Bi2Te3-Sb2Te3 solid solution. A further increase in the content of Sb2Te3 is accompanied by discontinuities in the functional dependences of the parameters characterizing the plasma oscillations of free charge carriers on the solid-solution composition and also by a sharp increase in E g opt.  相似文献   

3.

The temperature dependences of the resistivity in the directions parallel and perpendicular to the layer plane in the range of temperatures T = 5–300 K and the Hall and transverse magnetoresistance effects (magnetic fields <80 kOe, T = 5 K) are studied for doped and undoped Bi2Te3 layered single crystals. It is shown that, upon the doping of Bi2Te3 crystals with atoms of rare-earth elements (Eu, Tb, Dy), the resistivity in the directions parallel and perpendicular to the layer plane in Bi2Te3 increases. The increase in the resistivity is caused mainly by a decrease in the charge-carrier mobility because of an increased contribution of charge-carrier scattering at defects to scattering processes. The charge-carrier concentrations and mobilities as well as the Hall factor defined by the anisotropy of the effective masses and by the orientation of ellipsoids with respect to the crystallographic axes are estimated.

  相似文献   

4.
In this work, Bi2Te3-Sb2Te3 superlattices were prepared by the nanoalloying approach. Very thin layers of Bi, Sb, and Te were deposited on cold substrates, rebuilding the crystal structure of V2VI3 compounds. Nanoalloyed super- lattices consisting of alternating Bi2Te3 and Sb2Te3 layers were grown with a thickness of 9 nm for the individual layers. The as-grown layers were annealed under different conditions to optimize the thermoelectric parameters. The obtained layers were investigated in their as-grown and annealed states using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive x-ray (EDX) spectroscopy, transmission electron microscopy (TEM), and electrical measurements. A lower limit of the elemental layer thickness was found to have c-orientation. Pure nanoalloyed Sb2Te3 layers were p-type as expected; however, it was impossible to synthesize p-type Bi2Te3 layers. Hence the Bi2Te3-Sb2Te3 superlattices consisting of alternating n- and p-type layers showed poor thermoelectric properties.  相似文献   

5.
Temperature dependences of electrical conductivity σ(T) and permittivity ɛ(T) of one-dimensional (1D) TlGaTe2 single crystals are investigated. At temperatures higher than 305 K, superionic conductivity of the TlGaTe2 is observed and is related to diffusion of Tl+ ions via vacancies in the thallium sublattice between (Ga3+Te22− nanochains. A relaxation character of dielectric anomalies is established, which suggests the existence of electric charges weakly bound to the crystal lattice. Upon the transition to the superionic state, relaxors in the TlGaTe2 crystals are Tl+ dipoles ((Ga3+Te22−) chains) that arise due to melting of the thallium sublattice and hops of Tl+ ions from one localized state to another. The effect of a field-induced transition of the TlGaTe2 crystal to the superionic state is detected.  相似文献   

6.
The temperature dependences of the conductivity σ(T) and the switching and memory effects in one-dimensional TlInSe2 and TlInTe2 single crystals have been studied. A specific feature is found in the dependence σ(T) above 333 K, which is related to the transition of crystals to the state with superionic conductivity. It is suggested that the ion conductivity is caused by the diffusion of Tl+ ions over vacancies in the thallium sublattice between (In3+Te22−) and (In3+Se22−) nanochains (nanorods). S-type switching and memory effects are revealed in TlInSe2 and TlInTe2 crystals, as well as voltage oscillations in the range of negative differential resistance. It is suggested that the switching effect and voltage oscillations are related to the transition of crystals to the superionic state, which is accompanied by “melting” of the Tl sublattice. The effect of electric-field-induced transition of TlInSe2 and TlInTe2 crystals to the superionic state is found.  相似文献   

7.
We report on the successful hydrothermal synthesis of Bi0.5Sb1.5Te3, using water as the solvent. The products of the hydrothermally prepared Bi0.5 Sb1.5Te3 were hexagonal platelets with edges of 200–1500 nm and thicknesses of 30–50 nm. Both the Seebeck coefficient and electrical conductivity of the hydrothermally prepared Bi0.5Sb1.5Te3 were larger than those of the solvothermally prepared counterpart. Hall measurements of Bi0.5Sb1.5Te3 at room temperature indicated that the charge carrier was p-type, with a carrier concentration of 9.47 × 1018 cm−3 and 1.42 × 1019 cm−3 for the hydrothermally prepared Bi0.5Sb1.5Te3 and solvothermally prepared sample, respectively. The thermoelectric power factor at 290 K was 10.4 μW/cm K2 and 2.9 μW/cm K2 for the hydrothermally prepared Bi0.5Sb1.5Te3 and solvothermally prepared sample, respectively.  相似文献   

8.
In (Bi1.9Sb0.1)1 − x Sn x Te3 solid solution with different contents of Sn, the electrical conductivity (σ11) and the Hall (R 123 and R 321), Seebeck (S 11 and S 33), and Nernst-Ettingshausen (Q 123 and Q 321) coefficients have been measured. It is shown that doping with tin strongly modifies temperature dependences of the kinetic coefficients. The effect of tin on electrical homogeneity of the samples has been studied: with increasing number of Sn atoms embedded, crystals become more homogeneous. These features indicate the presence of the quasi-local states of Sn in the valence band of Bi1.9Sb0.1Te3. Within a one-band model, we estimated the effective mass of the density of hole states (m d ), the energy gap extrapolated to 0 K (E g0 = 0.20–0.25 eV), the energy of impurity states (E Sn ≈ 40–45 meV), and the scattering parameter (r ≈ 0.1–0.4). Numerical values of the scattering parameter indicate a mixed mechanism of scattering in the samples under investigation with dominant scattering at acoustic phonons. With increasing content of tin in the samples, the contribution of impurity scattering increases.  相似文献   

9.
n-Type Bi2Te3 nanocomposites with enhanced figure of merit, ZT, were fabricated by a simple, high-throughput method of mixing nanostructured Bi2Te3 particles obtained through melt spinning with micron-sized particles. Moderately high power factors were retained, while the thermal conductivity of the nanocomposites was found to decrease with increasing weight percent of nanoinclusions. The peak ZT values for all the nanocomposites were above 1.1, and the maximum shifted to higher temperature with increasing amount of nanoinclusions. A maximum ZT of 1.18 at 42°C was obtained for the 10 wt.% nanocomposite, which is a 43% increase over the bulk sample at the same temperature. This is the highest ZT reported for n-type Bi2Te3 binary material, and higher ZT values are expected if state-of-the-art Bi2Te3−x Se x materials are used.  相似文献   

10.
A series of Bi2(Se0.4Te0.6)3 compounds were synthesized by a rapid route of melt spinning (MS) combined with a subsequent spark plasma sintering (SPS) process. Measurements of the Seebeck coefficient, electrical conductivity, and thermal conductivity were performed over the temperature range from 300 K to 520 K. The measurement results showed that the cooling rate of melt spinning had a significant impact on the transport properties of electrons and phonons, effectively enhancing the thermoelectric properties of the compounds. The maximum ZT value reached 0.93 at 460 K for the sample prepared with the highest cooling rate, and infrared spectrum measurement results showed that the compound with lower tellurium content, Bi2(Se0.4Te0.6)3, possesses a larger optical forbidden gap (E g) compared with the traditional n-type zone-melted material with formula Bi2(Se0.07Te0.93)3. Our work provides a new approach to develop low-tellurium-bearing Bi2Te3-based compounds with good thermoelectric performance.  相似文献   

11.
Nanopowders of Bi2Te3 and R0.1Bi1.9Te3 (where R = Er, Tm, Yb, Lu) are obtained by microwave solvothermal synthesis. The powder-like materials are compacted by cold isostatic compression followed by annealing in argon. The influence of the doping agent on the structure and characteristics of the derived materials are investigated. It is demonstrated that the introduction of rare-earth elements (2 at %) into the bismuth-telluride lattice leads to a decrease in the electrical resistivity and to an increase in the Seebeck coefficient. The best thermoelectric properties are obtained for the sample of bismuth telluride doped with thulium.  相似文献   

12.
Polycrystalline p-type Bi0.5Sb1.5Te3 and n-type Bi2Te2.7Se0.3 thermoelectric (TE) alloys containing a small amount (vol.% ≤5) of SiC nanoparticles were fabricated by mechanical alloying and spark plasma sintering. It was revealed that the effects of SiC addition on TE properties can be different between p-type and n-type Bi2Te3-based alloys. SiC addition slightly increased the power factor of the p-type materials by decreasing both the electrical resistivity (ρ) and Seebeck coefficient (α), but decreased the power factor of n-type materials by increasing both ρ and α. Regardless of the conductivity type, the thermal conductivity was reduced by dispersing SiC nanoparticles in the Bi2Te3-based alloy matrix. As a result, a small amount (0.1 vol.%) of SiC addition increased the maximum dimensionless figure of merit (ZT max) of the p-type Bi0.5Sb1.5Te3 alloys from 0.88 for the SiC-free sample to 0.97 at 323 K, though no improvement in TE performance was obtained in the case of n-type Bi2Te2.7Se0.3 alloys. Importantly, the SiC-dispersed alloys showed better mechanical properties, which can improve material machinability and device reliability.  相似文献   

13.
The results of studying the electrical properties of Hg3In2Te6 crystals irradiated with electrons with the energy E e = 18 MeV and the dose D = 4 × 1016 cm−2 are reported. It is shown that, irrespective of the charge-carrier concentration in the initial material, the Hg3In2Te6 samples acquire the charge-carrier concentration (1.6–1.8) × 1013 cm−3 after irradiation. The phenomenon of Fermi level pinning in an irradiated material is discussed. The initial charge-carrier concentration, which remains virtually unchanged after irradiation and which ensures the high radiation resistance of Hg3In2Te6 crystals, corresponds to a compensated material, similar to an intrinsic semiconductor at T > 260 K.  相似文献   

14.
A series of samples with nominal compositions of AgSb1−x Sn x Se2 (with x = 0.0, 0.1, 0.2, and 0.3) and AgSbSe2−y Te y (with y = 0.0, 0.25, 0.5, 0.75, and 1.0) were prepared. The crystal structure of both single crystals and polycrystalline samples was analyzed using x-ray and neutron diffractometry. The electrical conductivity, thermal conductivity, and Seebeck coefficient were measured within the temperature range from 300 K to 700 K. In contrast to intrinsic AgSbSe2, samples doped with Sn and Te exhibit apparent semiconducting properties (E g = 0.3 eV to 0.5 eV), lower electrical conductivity, and higher values of the Seebeck coefficient for a small amount of Sn (x = 0.1). Further doping leads to decrease of the thermoelectric power and increase of the electrical conductivity. In order to explain electron transport behavior observed in pure and doped AgSbSe2, electronic structure calculations were performed by the Korringa–Kohn–Rostoker method with coherent potential approximation (KKR–CPA).  相似文献   

15.
The solidification of alloys in the Bi2Te3-PbTe pseudobinary system at off- and near-eutectic compositions was investigated for their microstructure and thermoelectric properties. Dendritic and lamellar structures were clearly observed due to the phase separation and the existence of a metastable ternary phase. In this system, three phases with different compositions were observed: binary Bi2Te3, PbTe, and metastable PbBi2Te4. The Seebeck coefficient, electrical resistivity, and thermal conductivity of ternary alloys as well as binary compounds were measured. The phonon thermal conductivities of Pb-Bi-Te alloys were lower than those in binary PbTe and Bi2Te3, which could have resulted from the increased interfacial area between phases due to the existence of the metastable ternary phase and the resultant phase separation.  相似文献   

16.
The temperature and electric- and magnetic-field dependences of the resistivity of the R0.1Bi1.9Te3 compound are investigated. It is shown that, in the low-temperature region, variable-range hopping conductivity is realized in this compound. In the temperature range of hopping conductivity, the electrical resistivity decreases with increasing electric-field strength in the sample, which is typical of charge-carrier tunneling from one localized state in the impurity band to another. Investigation of the transverse magnetoresistance revealed the crossover from the parabolic dependence of the magnetoresistance in low fields to the linear dependence in high fields. The established features of the transport properties of the R0.1Bi1.9Te3 compound are characteristic of inhomogeneous and disordered semiconductors.  相似文献   

17.
Te-doped Mg2Si (Mg2Si:Te m , m = 0, 0.01, 0.02, 0.03, 0.05) alloys were synthesized by a solid-state reaction and mechanical alloying. The electronic transport properties (Hall coefficient, carrier concentration, and mobility) and thermoelectric properties (Seebeck coefficient, electrical conductivity, thermal conductivity, and figure of merit) were examined. Mg2Si was synthesized successfully by a solid-state reaction at 673 K for 6 h, and Te-doped Mg2Si powders were obtained by mechanical alloying for 24 h. The alloys were fully consolidated by hot-pressing at 1073 K for 1 h. All the Mg2Si:Te m samples showed n-type conduction, indicating that the electrical conduction is due mainly to electrons. The electrical conductivity increased and the absolute value of the Seebeck coefficient decreased with increasing Te content, because Te doping increased the electron concentration considerably from 1016 cm−3 to 1018 cm−3. The thermal conductivity did not change significantly on Te doping, due to the much larger contribution of lattice thermal conductivity over the electronic thermal conductivity. Thermal conduction in Te-doped Mg2Si was due primarily to lattice vibrations (phonons). The thermoelectric figure of merit of intrinsic Mg2Si was improved by Te doping.  相似文献   

18.
n-Type nanoporous Bi2Te3-based thermoelectric materials with different porosity ratios have been prepared by spark plasma sintering (SPS). The microstructure and phase morphology have been analyzed by x-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM), and the thermoelectric properties of the SPS samples have been measured. Experimental results show that the nanoporous structures lying in the sheet layers and among the plate grains of the Bi2Te3 bulk material can lead to an increase in the Seebeck coefficient and a decrease in the thermal conductivity, thus leading to an enhanced figure of merit.  相似文献   

19.
In this work, nano-structured Bi2Te3 and PbTe thermoelectric materials were synthesized separately via solvothermal, hydrothermal and low-temperature aqueous chemical routes. X-ray diffraction (XRD), field-emission scanning-electron microscopy (FESEM), transmission electron microscopy (TEM), and energy dispersive spectroscopy (EDS) were used to analyze the powder products. Results showed that the as-prepared Bi2Te3 samples were all single-phased and consisted of irregular spherical granules with diameters of ∼30 nm whereas the PbTe samples were mainly composed of well-crystallized cubic crystals with average size of approximately 100 nm. Some nanotubes and nanorods were found in Bi2Te3 and PbTe samples, respectively; these were identified as Bi2Te3 nanotubes and PbTe nanorods by EDS analysis. Possible reaction mechanisms for these syntheses are discussed in detail herein.  相似文献   

20.
Flash evaporation is used to grow Bi0.5Sb1.5Te3 films 1200 nm thick on mica substrates. The average lateral crystallite sizes in the as-grown films are ~800 nm. The (0001) plane in the crystallites is preferentially parallel to the substrate plane. After heat treatment in an argon atmosphere, the effective lateral size of crystallites in which the third-order axis is perpendicular to the substrate plane increased by a factor of 3–5. The crystallites were preferentially oriented in the substrate plane as well. The thermoelectric-power parameter of Bi0.5Sb1.5Te3 films after their heat treatment in an inert environment increased approximately twofold to values close to that of the corresponding single crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号