首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of annealing in argon at temperatures of Tan = 700–900°C on the IV characteristics of metal–Ga2O3–GaAs structures is investigated. Samples are prepared by the thermal deposition of Ga2O3 powder onto GaAs wafers with a donor concentration of N d = 2 × 1016 cm–3. To measure theIV characteristics, V/Ni metal electrodes are deposited: the upper electrode (gate) is formed on the Ga2O3 film through masks with an area of S k = 1.04 × 10–2 cm2 and the lower electrode in the form of a continuous metallic film is deposited onto GaAs. After annealing in argon at Tan ≥ 700°C, the Ga2O3-n-GaAs structures acquire the properties of isotype n-heterojunctions. It is demonstrated that the conductivity of the structures at positive gate potentials is determined by the thermionic emission from GaAs to Ga2O3. Under negative biases, current growth with an increase in the voltage and temperature is caused by field-assisted thermal emission in gallium arsenide. In the range of high electric fields, electron phonon-assisted tunneling through the top of the potential barrier is dominant. High-temperature annealing does not change the electron density in the oxide film, but affects the energy density of surface states at the GaAs–Ga2O3 interface.  相似文献   

2.
The development of new nanostructured materials based on YBa2Cu3O7–δ, BiFeO3, and Fe3O4 compounds is considered. The structure, morphology, and properties of these materials are studied. The possibilities of fabricating YBa2Cu3O7–δ ceramics with given densities from nanopowders in a single stage by an energy efficient method and growing superconducting films of the same composition on a silicon substrate (on a SiO2 layer) are demonstrated. The technique for fabricating BiFeO3 nanopowder, making it possible to obtain nanostructured ceramics without additional accompanied phases commonly forming during BiFeO3 synthesis is developed. Two methods of the single-stage synthesis of Fe3O4 nanopowder are presented: burning of nitrate-organic precursors and the electrochemical three-electrode method in which one of the electrodes, i.e., an anode containing scrap iron and slurry, is used as an expendable material.  相似文献   

3.
Single-crystal samples of the type VIII clathrate Ba8Ga16−x Al x Sn30 (0 ≤ x ≤ 12) were prepared by the Sn-flux method, and the structural and electrical properties were studied from 300 K to 600 K. The lattice parameter increases linearly as x is increased from 0 to 10.5, which is the solubility limit of Al. For all samples, the electrical conductivity σ decreases monotonically as the temperature is increased. σ(T = 300 K) increases from 1.88 × 104 S/m for x = 0 to 3.03 × 104 S/m for x = 2, and then gradually decreases to 2.4 × 104 S/m with further increase of x to 8. The increase of σ for Al-substituted samples is attributed to enhancement of carrier mobility. The Seebeck coefficients of samples with 0 ≤ x ≤ 8 are negative with large values, and the absolute values increase from 240 μV/K to 320 μV/K as the temperature increases from 300 K to 600 K. At 300 K, the effective mass m*/m 0 is in the range from 0.53 to 0.67, and the samples with x = 6 and x = 8 have a rather low thermal conductivity of 0.72 W/mK and 0.78 W/mK, respectively. ZT reaches 1.2 at 500 K for x = 6.  相似文献   

4.
A combined study of the spectral photoluminescence distribution and excitation spectra of photoluminescence in La2S3 · 2Ga2O3 and (La0.97Nd0.03)2S3 · 2Ga2O3 glasses, along with the study of the transmission spectra of these glasses, was carried out. The radiative channel was ascertained to be the main channel for the energy transfer from the host matrix to the Nd3+ ions upon excitation of the glasses with light at a wavelength of the fundamental absorption band. Oxygen centers with the level E c -2.0 eV act as sensitizing agents. The structural disordering of the glass host increases the variance in the magnitude of splitting of the multiplet levels from the 4f electronic states of the Nd3+ ion. This promotes nonradiative relaxation of the electrons from excited states to the laser 4F3/2 level. The (La0.97Nd0.03)2S3 · 2Ga2O3 glasses can be considered as promising laser materials for obtaining the stimulated emission of radiation of Nd3+ ions under an optical pump in the range of the fundamental absorption band of the glass.  相似文献   

5.
The results of studies of thin composite films of zinc and copper tetraphenylporphyrins with different fractions of fullerene C60 are reported. The photoluminescence spectra are recorded, and the composition and surface morphology are analyzed by means of scanning electron microscopy. The results show a difference in the structure of films with two types of metals (Zn, Cu) entering into the complex of the porphyrin macrocycle. An additional long-wavelength photoluminescence band at 1.4 eV is detected for the first time, which is evidence of the formation of ZnTPP–C60 molecular complexes from a gas-dynamic vapor flow upon condensation. In CuTPP thin films, the processes of self-assembly into nanowires 20 nm in diameter and up to 50 µm in length and the formation of nanoheterojunctions upon the addition of fullerene C60 are observed. Quantum-chemical calculations in the context of density-functional theory are carried out to interpret the experimental data.  相似文献   

6.
Bi0.85Nd0.15FeO3 (BNF) nanotube arrays were prepared by a sol–gel template method. The microstructure and phase were observed by scanning electron microscopy and transmission electron microscopy. Highly ordered nanotube arrays with BNF nanotubes of 200 nm diameter, 60 μm length, and 20 nm wall thickness were obtained. The BNF nanotube array capacitor showed ferroelectricity with a remanent polarization (2P r) of 68.7 μC/cm2 and a coercive electric field (2E c) of 141.9 kV/cm at frequency of 1000 Hz. The leakage current behavior of the BNF nanotube array was dominated by an ohmic conduction mechanism at E < 30 kV/cm and a space-charge-limited current mechanism at E = 30 kV/cm to 200 kV/cm.  相似文献   

7.
A series of compounds with composition Ag0.5In0.5−x Pb5Sn4Te10 (= 0.05 to 0.20) were prepared by slowly cooling the melts of the corresponding elements, and the effect of In content on the thermoelectric transport properties of these compounds has been investigated. Results indicate that the compounds’ electronic structure is sensitive to In content, and that the carrier concentration of these compounds at room temperature increases from 4.86 × 1018 cm−3 to 3.85 × 1021 cm−3 as x increases from 0.05 to 0.20. For these compounds, electrical conductivity decreases and Seebeck coefficient increases with increasing In content. Ag0.05In0.03Pb0.5Sn0.4Te10 shows very low lattice thermal conductivity, and has a maximum dimensionless figure of merit ZT of 1.2 at 800 K.  相似文献   

8.
The effect of the content of CuO additive on the sinterability, phase composition, microstructure, and electrical properties of BaCe0.5Zr0.3Y0.2O3–δ proton-conducting material is studied. Ceramic samples were produced by the citrate–nitrate synthesis method with the addition of 0, 0.25, 0.5, and 1% CuO. It is shown that the relative density of the samples containing 0.5 and 1% CuO is higher than 94% at a sintering temperature of 1450°C, whereas the relative density of the material is no higher than 85% at a lower content of the sintering additive. From the data of X-ray diffraction analysis and scanning electron microscopy, it is established that the introduction of a small CuO content (0.25%) is inadequate for single-phase and high-dense ceramics to be formed. The conductivity and scanning electron microscopy data show that the sample with BaCe0.5Zr0.3Y0.2O3–δ + 0.5% CuO composition possesses high total and ionic conductivities as well as a high degree of microstructural stability after hydrogen reduction of the ceramics. The citrate–nitrate method modified by the introduction of a small CuO content can be recommended for the production of single-phase, gas-tight, and high-conductivity electrolytes based on both BaCeO3 and BaZrO3.  相似文献   

9.
Type I clathrate bulk materials Ba8Sb2Ga14Ge30 were prepared by the melt spinning (MS) technique combined with the spark plasma sintering (SPS) method. The microstructure and thermoelectric transport properties of the compounds were investigated. The results show that the grain size decreases greatly compared with materials obtained by the traditional melting and SPS method. The electrical conductivity increases greatly and the lattice thermal conductivity decreases significantly with increasing roller linear speed. The maximum thermoelectric dimensionless figure of merit ZT of 1.05 is obtained at 950 K for the sample prepared by melt spinning with a roller linear speed of 40 m/s.  相似文献   

10.
We present preliminary results on Se diffusion in liquid-phase epitaxy (LPE)–grown HgCdTe epilayers. The LPE Hg0.78Cd0.22Te samples were implanted with Se of 2.0 × 1014/cm2 at 100 keV and annealed at 350–450°C in mercury saturated vapor. Secondary ion mass spectrometry (SIMS) profiles were obtained for each sample. From a Gaussian fit, we find that the Se diffusion coefficient D Se is about 1–2 orders of magnitude smaller than that of arsenic. The as-implanted Se distribution is taken into account in case of small diffusion length in Gaussian fitting. The D Se was found to satisfy the Arrhenius relationship .  相似文献   

11.
Harvesting energy from waste heat is a promising field of research as there are significant energy recovery opportunities from various waste thermal energy sources. The present study reports pyroelectric energy harvesting using thick film prepared from a (x)BaTiO3–(1 ? x)PbZr0.52Ti0.48O3 (BT–PZT) solid solution. The developed BT–PZT system is engineered to tune the ferro to paraelectric phase transition temperature of it in-between the phase transition temperature of BaTiO3 (393 K) and PbZrTiO3 (573 K) with higher pyroelectric figure-of-merit (FOM). The temperature-dependent dielectric behavior of the material has revealed the ferro- to paraelectric phase transition at 427 K with a maximum dielectric constant of 755. The room-temperature (298 K) pyroelectric coefficient (Pi) of the material was obtained as 738.63 μC/m2K which has yielded a significantly high FOM of 1745.8 J m?3 K?2. The enhancement in pyroelectric property is attributed to the morphotopic phase transition between tetragonal and rhombohedral PZT phases in the BT–PZT system. The developed BT–PZT system is capable of generating a power output of 1.3 mW/m2 near the Curie temperature with a constant rate (0.11 K/s) of heating. A signal conditioning circuit has been developed to rectify the time-varying current and voltage signals obtained from the harvester during heating cycles. The output voltage generated by the pyroelectric harvester has been stored in a capacitor for powering wearable electronics.  相似文献   

12.
Single crystals of the ternary compound FeIn2Se4 are grown by directional crystallization of the melt. The composition and structure of the single crystals are determined. The local states of iron ions in this compound are studied by nuclear γ-resonance spectroscopy in transmission configuration. The temperature and field dependences of a specific magnetic moment for the ternary compound FeIn2Se4 are measured in the temperature range 4–310 K in magnetic fields of 0–140 kOe. The reasons and mechanisms for magnetic state formation in single crystals of the obtained compound are discussed.  相似文献   

13.
Thin solid layers that are formed upon heating of the gaseous trimethylbismuth–isopropylselenide–hydrogen system on the (0001) Al2O3 and singular and vicinal (100) GaAs surfaces are studied. The conditions for deposition of metal Bi and phases of Bi4Se3, BiSe, and topological insulator Bi2Se3 using the MOCVD method are determined. Pure metastable phase BiSe is obtained for the first time. Bi2Se3 films with a thickness of no less than 200 nm, a relatively low volume concentration of 3 ×1018 cm–3, and a high mobility of carriers at 300 K (1000 cm2 V–1 s–1) are fabricated.  相似文献   

14.
On the basis of the temperature and field dependences of the Hall coefficient R H , it was found that samples with a low electron density are, as a rule, compensated, and the degree of compensation changes upon thermal conversion of the conductivity of the sample to p type. For n-CdxHg1?xTe, the ionization energy of the donor level was found from the temperature dependences of resistivity ρ(T): E d =24–32 meV. For the same samples, after their thermal conversion to p type, the ionization energies of acceptors, which are related to doubly charged vacancies V Hg ++ , were determined: E a =32 and 48 meV. In addition, a deep level E t , related to an unknown amphoteric impurity, was found (E t ?E v ≈0.7E g ).  相似文献   

15.
The fitting of θ/2θ and ω peaks in X-ray diffraction curves is shown to be most accurate in the case of using an inverse fourth-degree polynomial or probability density function with Student’s distribution (Pearson type VII function). These functions describe well both the highest-intensity central part of the experimental peak and its low-intensity broadened base caused by X-ray diffuse scattering. The mean microdeformation ε and mean vertical domain size D are determined by the Williamson–Hall method for layers of GaN (ε ≈ 0.00006, D ≈ 200 nm) and Al0.32Ga0.68N (ε = 0.0032 ± 0.0005, D = 24 ± 7 nm). The D value obtained for the Al0.32Ga0.68N layer is most likely to result from the nominal thickness of this layer, which is 11 nm.  相似文献   

16.
The results of studies of optical reflection in the far- and mid-infrared spectral regions are reported. The reflectance of five Bi2Se3 topological insulator films grown by molecular-beam epitaxy on Si(111) substrates is measured. The characteristic parameters of phonons and plasmons are determined by means of dispersion analysis for multilayer structures. It is found that the plasma frequency in a layer close to the Si–film interface is noticeably higher than that in the film bulk. Calculations of the loss function show that plasmon–phonon coupling plays an important role in Bi2Se3 films. The attenuated total internal reflection method is used to determine the frequency of the surface plasmon–phonon mode.  相似文献   

17.
The optical and thermal properties of crystals of CuAlxIn1?xTe2 solid solutions grown by the Bridgman-Stockbarger method were studied for the first time. From the transmission and reflection spectra in the region of the intrinsic-absorption edge, the band gap (E g ) was determined for the CuInTe2 and CuAlTe2 compounds and for their solid solutions; the concentration dependence of E g was plotted. The E g value was found to vary nonlinearly with x and can be described by the quadratic dependence. Dilatometry was used to study the thermal expansion of these solid solutions. The coefficient of thermal expansion (αL) was shown to have a λ-shaped temperature dependence in the region of phase transitions. The isotherms are plotted for the concentration dependence of αL. The thermal conductivity was investigated and its concentration dependence was plotted. The dependence of the thermal conductivity on x was established to have a minimum in the region of medium compositions.  相似文献   

18.
p-Zn2?2xCuxInxSe2 (ZCIS) polycrystalline films 1–2 ¼m thick have been obtained by selenization. Photosensitive surface-barrier In/p-ZCIS structures are fabricated based on the films. The spectra of relative quantum efficiency of the structures obtained by selenization of the initial ZnSe/(Cu-In) and (Zn-Cu-In) films are examined. The optical band gap of the Zn2?2xCuxInxSe2 films is determined. Conclusions are reached on the prospects for the use of the obtained films as broadband photoconverters of natural optical radiation.  相似文献   

19.
The optimum mode of the in situ plasma-chemical etching of a Si3N4 passivating layer in C3F8/O2 medium is chosen for the case of fabricating AlGaN/AlN/GaN НЕМТs. It is found that a bias of 40–50 V at a high-frequency electrode provides anisotropic etching of the insulator through a resist mask and introduces no appreciable radiation-induced defects upon overetching of the insulator films in the region of gate-metallization formation. To estimate the effect of in situ Si3N4 growth together with the heterostructure in one process on the AlGaN/AlN/GaN НЕМТ characteristics, transistors with gates without the insulator and with gates through Si3N4 slits are fabricated. The highest drain current of the AlGaN/AlN/GaN НЕМТ at 0 V at the gate is shown to be 1.5 times higher in the presence of Si3N4 than without it.  相似文献   

20.
The electrical characteristics of p-type Cd1?xZnxTe (x=0.05) and Cd1?xMnxTe (x=0.04) single crystals with a resistivity of 103–1010 Ω cm at 300 K are studied. The conductivity and its variation with temperature are interpreted on the basis of statistics of electrons and holes in a semiconductor with deep acceptor impurities (defects), with regard to their compensation by donors. The depth of acceptor levels and the degree of their compensation are determined. The problems of attaining near intrinsic conductivity close to intrinsic are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号