首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metabolomics seeks to measure potentially all the metabolites in a biological sample, and consequently, we need to develop and optimize methods to increase significantly the number of metabolites we can detect. We extended the closed-loop (iterative, automated) optimization system that we had previously developed for one-dimensional GC-TOF-MS (O'Hagan, S.; Dunn, W. B.; Brown, M.; Knowles, J. D.; Kell, D. B. Anal. Chem. 2005, 77, 290-303) to comprehensive two-dimensional (GCxGC) chromatography. The heuristic approach used was a multiobjective version of the efficient global optimization algorithm. In just 300 automated runs, we improved the number of metabolites observable relative to those in 1D GC by some 3-fold. The optimized conditions allowed for the detection of over 4000 raw peaks, of which some 1800 were considered to be real metabolite peaks and not impurities or peaks with a signal/noise ratio of less than 5. A variety of computational methods served to explain the basis for the improvement. This closed-loop optimization strategy is a generic and powerful approach for the optimization of any analytical instrumentation.  相似文献   

2.
This work describes an approach to differential metabolomics that involves stable isotope labeling for relative quantification as part of sample analysis by two-dimensional gas chromatography/mass spectrometry (GCxGC/MS). The polar metabolome in control and experimental samples was extracted and differentially derivatized using isotopically light and heavy (D6) forms of the silylation reagent N-methyl-N-tert-butyldimethylsilyl)trifluoroacetamide (MTBSTFA). MTBSTFA derivatives are of much greater hydrolytic stability than the more common trimethylsilyl derivatives, thus diminishing the possibility of isotopomer scrambling during GC analysis. Subsequent to derivatization with MTBSTFA, differentially labeled samples were mixed and analyzed by GCxGC/MS. Metabolites were identified, and the isotope ratio of isotopomers was quantified. The method was tested using three classes of metabolites; amino acids, fatty acids, and organic acids. The relative concentration of isotopically labeled metabolites was determined by isotope ratio analysis. The accuracy and precision, respectively, in quantification of standard mixtures was 9.5 and 4.77% for the 16 amino acids, 9.7 and 2.83% for the mixture of 19 fatty acids, and 14 and 4.53% for the 20 organic acids. Suitability of the method for the examination of complex samples was demonstrated in analyses of the spiked blood serum samples. This differential isotope coding method proved to be an effective means to compare the concentration of metabolites between two samples simultaneously.  相似文献   

3.
Successful application of the Hadamard transform (HT) technique to gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS) is described. Novel sample injection devices were developed to achieve multiple sample injections in both GC and LC instruments. Air pressure was controlled by an electromagnetic valve in GC, while a syringe pump and Tee connector were employed for the injection device in LC. Two well-known, abused drugs, 3,4-methylenedioxy-N-methylamphetamine (MDMA) and N, N-dimethyltryptamine (DMT), were employed as model samples. Both of the injection devices permitted precise successive injections, resulting in clearly modulated chromatograms encoded by Hadamard matrices. After inverse Hadamard transformation of the encoded chromatogram, the signal-to-noise (S/N) ratios of the signals were substantially improved compared with those expected from theoretical values. The S/N ratios were enhanced approximately 10-fold in HT-GC/MS and 6.8 in HT-LC/MS, using the matrices of 1023 and 511, respectively. The HT-GC/MS was successfully applied to the determination of MDMA in the urine sample of a suspect.  相似文献   

4.
An interface and gas chromatograph oven are described that couple a thermogravimetric analyzer with a mass spectrometer and permit multiple capillary gas chromatographic separations of volatile thermal decomposition products generated during a single thermogravimetric analysis. Examples of the use of this apparatus for identifying the volatile products generated during poly(vinyl butyral) thermal decomposition in the presence of γ-alumina and catalytic cracking of poly(styrene) and poly(ethylene) are described. TG-GC/MS analyses employing isothermal, temperature programmed, and subambient temperature ramp gas chromatography separations are described. The apparatus permits repetitive temperature-programmed capillary gas chromatographic analyses of thermogravimetric effluent containing more than 25 constituents in 3-min intervals.  相似文献   

5.
Application of C18 monolithic silica capillary columns in HPLC coupled to ion trap mass spectrometry detection was studied for probing the metabolome of the model plant Arabidopsis thaliana. It could be shown that the use of a long capillary column is an easy and effective approach to reduce ionization suppression by enhanced chromatographic resolution. Several hundred peaks could be detected using a 90-cm capillary column for LC separation and a noise reduction and automatic peak alignment software, which outperformed manual inspection or commercially available mass spectral deconvolution software.  相似文献   

6.
7.
8.
Hefter J 《Analytical chemistry》2008,80(6):2161-2170
Extensively purified C37 alkenone references and mixtures thereof were analyzed by gas chromatography/flame ionization detection (GC/FID) and fast gas chromatography/time-of-flight mass spectrometry (GC/TOF-MS), to establish the latter as an alternative, fast, and reliable analysis method for alkenone unsaturation indices (U(k')(37)). This index is a tool for past sea surface temperature reconstructions with extensive use in paleoclimate and paleoceanographic research. TOF-MS was chosen because of its unique capability to acquire full-range spectra at high data rates (up to 500 spectra s(-1)) and to produce homogeneous spectra across a gaschromatographic peak, allowing faster separations than conventional GC/MS and the employment of enhanced peak deconvolution algorithms. Analysis time per sample could be reduced to run times of <10 min, i.e., by a factor of approximately 10 compared to conventional GC/FID (90-100 min) methods. However, %@mt;sys@%%@ital@%%@bold@%U%@reset@%%@rsf@%%@sx@%37%@be@%%@ital@%k%@rsf@%'%@sxx@%%@mx@% values from GC/TOF-MS showed deviations from those obtained by GC/FID, resulting from sensitivity differences between the C37:2 and C37:3 alkenone when analyzed by GC/TOF-MS. A solution to this bias is presented by determining compound-specific linear response factor equations to derive sensitivity ratios (SR) that allow conversion of GC/TOF-MS values into calibrated GC/FID data. Using alkenone mixtures of known composition and a variety of samples from natural environments, the applicability of this approach is demonstrated.  相似文献   

9.
10.
This study establishes the rationale necessary for determining the time to change engine oil. This is based on identifying gaseous components in new and used automobile lubricants. Key compounds, so-called "signature", are separated and identified qualitatively by coupled gas chromatography/mass spectrometry. Volatile antioxidants at zero miles and fuel contaminants at low mileage are observed in the headspace of engine oil. Several oxidative degradation components have been positively identified in the used oil, which include the following: acetaldehyde, acetone, butanal, 2-propanol, acetic acid, 2-hexanol, benzoic acid, benzaldehyde, and 1-pentanol. This study strongly suggests that the status of lubricating oil can be determined by the analysis of the gas phase above the oil. Most importantly, it opens the possibility of performing conditional maintenance of the combustion engine based on information obtained from gas sensors.  相似文献   

11.
We report here the first coupling of fast GC to IRMS, in a system capable of 250 ms peak widths (fwhm) at 1 mL/min flow rates, one-fifth as narrow as any previously reported GCC-IRMS system. We developed an optimized postcolumn interface that results in minimal peak broadening, using a programmable temperature vaporization injector in place of a rotary valve or backflush system to divert solvent, a narrow capillary combustion reactor followed by a cryogenic water trap with narrow-bore (<0.20 mm i.d.) transfer lines, and a narrow i.d. open split to the IRMS directly inserted into the column effluent. Quantitative combustion was demonstrated with CH4 injections. A comparison of CO2 injections with different fwhm peak widths (250, 2500, and 7500 ms) showed similar precisions, SD(delta13C)=0.2-0.3 per thousand, for injections of >600 pmol C on column; precision for the narrow peaks (250 ms) was considerably better for injections<150 pmol C on column. SD(delta13C)<1 per thousand was achievable for injections of 5-15 pmol on column for 250 ms wide peaks, 10-fold better precision than 2500 ms wide peaks, and within a factor of 3 of the counting statistics limit. For a mixture of 15 fatty acid methyl esters (FAME), 1.5 nmol C of each on column yielded typical SD(delta13Cpdb)=0.4 per thousand for fast GC and 0.5 per thousand for conventional GC. For 14 of the 15 FAME, delta13C values between the two systems were within+/-1.5 per thousand and not significantly different. Fast GCC-IRMS required one-third the run time (450 s vs 1400 s) to achieve comparable resolution. Mean peak widths for fast GCC-IRMS of the FAME were 720 ms, compared to 650 ms by fast GC with flame ionization detection. At a 15-fold dilution (100 pmol C on column for each FAME), fast GCC-IRMS achieved approximately 2-fold better precision and accuracy than similar injections on conventional GCC-IRMS. Finally, a mixture of 10 steroids (approximately 7 nmol C (100 ng) each on column) was analyzed with mean precision of SD(delta13C)=0.2 per thousand in 620 s by fast GCC-IRMS, while conventional GCC-IRMS required 1200 s and achieved poorer resolution. delta13C values for the two system were similar (Deltadelta13C1 nmol C) and achieves modest precision (approximately 1 per thousand) near the counting statistics limit on low level components.  相似文献   

12.
Chlorine isotope analysis of chlorinated hydrocarbons like trichloroethylene (TCE) is of emerging demand because these species are important environmental pollutants. Continuous flow analysis of noncombusted TCE molecules, either by gas chromatography/isotope ratio mass spectrometry (GC/IRMS) or by GC/quadrupole mass spectrometry (GC/qMS), was recently brought forward as innovative analytical solution. Despite early implementations, a benchmark for routine applications has been missing. This study systematically compared the performance of GC/qMS versus GC/IRMS in six laboratories involving eight different instruments (GC/IRMS, Isoprime and Thermo MAT-253; GC/qMS, Agilent 5973N, two Agilent 5975C, two Thermo DSQII, and one Thermo DSQI). Calibrations of (37)Cl/(35)Cl instrument data against the international SMOC scale (Standard Mean Ocean Chloride) deviated between instruments and over time. Therefore, at least two calibration standards are required to obtain true differences between samples. Amount dependency of δ(37)Cl was pronounced for some instruments, but could be eliminated by corrections, or by adjusting amplitudes of standards and samples. Precision decreased in the order GC/IRMS (1σ ≈ 0.1‰), to GC/qMS (1σ ≈ 0.2-0.5‰ for Agilent GC/qMS and 1σ ≈ 0.2-0.9‰ for Thermo GC/qMS). Nonetheless, δ(37)Cl values between laboratories showed good agreement when the same external standards were used. These results lend confidence to the methods and may serve as a benchmark for future applications.  相似文献   

13.
Data processing and identification of unknown compounds in comprehensive two-dimensional gas chromatography combined with time-of-flight mass spectrometry (GC×GC/TOFMS) analysis is a major challenge, particularly when large sample sets are analyzed. Herein, we present a method for efficient treatment of large data sets produced by GC×GC/TOFMS implemented as a freely available open source software package, Guineu. To handle large data sets and to efficiently utilize all the features available in the vendor software (baseline correction, mass spectral deconvolution, peak picking, integration, library search, and signal-to-noise filtering), data preprocessed by instrument software are used as a starting point for further processing. Our software affords alignment of the data, normalization, data filtering, and utilization of retention indexes in the verification of identification as well as a novel tool for automated group-type identification of the compounds. Herein, different features of the software are studied in detail and the performance of the system is verified by the analysis of a large set of standard samples as well as of a large set of authentic biological samples, including the control samples. The quantitative features of our GC×GC/TOFMS methodology are also studied to further demonstrate the method performance and the experimental results confirm the reliability of the developed procedure. The methodology has already been successfully used for the analysis of several thousand samples in the field of metabolomics.  相似文献   

14.
15.
Alkylbenzenesulfonates together with soap are the most widely used anionic surfactants. Linear alkylbenzenesulfonates (LAS) were introduced in the mid-1960s as substitutes for the poorly biodegradable tetrapropylenebenzenesulfonates (TPS). A method is presented for the selective and quantitative determination of LAS and TPS in recent sediments. Alkylbenzenesulfonates were extracted from sediments using methanol. The methanolic extract was passed through a strong anionic exchange column. The alkylbenzenesulfonates contained in the acidic eluate were then derivatized to their corresponding trifluoroethyl esters and quantitatively determined by gas chromatography/mass spectrometry using positive chemical ionization. Limits of quantitation for 10 g sediment samples varied between 1.5 and 21 μg/kg of dry sediment for single LAS isomers and between 71 and 220 μg/kg for total LAS. Limits of quantitation for the total of TPS were at ~200 μg/kg. Relative standard deviations of replicate analyses typically ranged from 5 to 10%. Recovery rates of LAS in spiked sediment samples ranged from 79 to 113%. The presented method was applied to surface and subsurface sediments also containing long-chain (C(14)-C(16))-LAS and mixtures of LAS and TPS.  相似文献   

16.
17.
We report the first coupling of comprehensive two-dimensional gas chromatography (GC x GC) to online combustion isotope ratio mass spectrometry (C-IRMS). A GC x GC system, equipped with a longitudinally modulated cryogenic system (LMCS), was interfaced to an optimized low dead volume combustion interface to preserve <300 ms full width at half-maximum (fwhm) fast GC peaks generated on the second GC column (GC2). The IRMS detector amplifiers were modified by configuration of resistors and capacitors to enable fast response, and a home-built system acquired data at 25 Hz. Software was home-written to handle isotopic time shifts of less than one bin (40 ms) and to integrate peak slices to recover isotope ratios from cryogenically sliced peaks. The performance of the GC x GCC-IRMS system was evaluated by isotopic analysis of urinary steroid standards. Steroids were separated by a nonpolar GC1 column (30 m x 0.25 mm, 5% phenyl), modulated into multiple 4- or 8-s cryogenic slices by the LMCS, and then separated on a polar GC2 column (1 or 2 m x 0.1 mm, 50% phenyl). GC2 peak widths from a 1-m column averaged 276 ms fwhm. Steroid standard sliced peaks were successfully reconstructed to yield delta(13)C VPDB values with average precisions of SD(delta(13)C) = 0.30 per thousand and average accuracies within 0.34 per thousand, at 8 ng on column. Two steroids, coeluting in GC1, were baseline separated in GC2 and resulted in delta(13)C VPDB values with average precisions of SD(delta(13)C) = 0.86 per thousand and average accuracies within 0.26 per thousand, at 3 ng on column. Results from this prototype system demonstrate that the enhanced peak capacity and signal available in GC x GC is compatible with high-precision carbon isotope analysis.  相似文献   

18.
We developed a simple and accurate method for determining deuterium enrichment of glucose hydrogen atoms by electron impact gas chromatography mass spectrometry (GC/MS). First, we prepared 18 derivatives of glucose and screened over 200 glucose fragments to evaluate the accuracy and precision of mass isotopomer data for each fragment. We identified three glucose derivatives that gave six analytically useful ions: (1) glucose aldonitrile pentapropionate (m/z 173 derived from C4-C5 bond cleavage; m/z 259 from C3-C4 cleavage; m/z 284 from C4-C5 cleavage; and m/z 370 from C5-C6 cleavage); (2) glucose 1,2,5,6-di-isopropylidene propionate (m/z 301, no cleavage of glucose carbon atoms); and (3) glucose methyloxime pentapropionate (m/z 145 from C2-C3 cleavage). Deuterium enrichment at each carbon position of glucose was determined by least-squares regression of mass isotopomer distributions. The validity of the approach was tested using labeled glucose standards and carefully prepared mixtures of standards. Our method determines deuterium enrichment of glucose hydrogen atoms with an accuracy of 0.3 mol %, or better, without the use of any calibration curves or correction factors. The analysis requires only 20 μL of plasma, which makes the method applicable for studying gluconeogenesis using deuterated water in cell culture and animal experiments.  相似文献   

19.
The advantages of gas chromatography/mass spectrometry (GC/MS) selected-ion monitoring (SIM) in the mass profile (MP) mode at medium mass resolving power were investigated for analyses requiring detection of low-picogram quantities of analytes in complex mixtures. The mass profile monitoring provides a certainty at least 10 times greater than that achieved by conventional GC/MS-SIM in the peak-top monitoring mode, and it can be operated at lower mass resolving power to compensate for the loss of sensitivity in the MP mode. The examination of mass profile peak shape, central mass shift, and sequential changes during GC elution not only reveals the presence of interfering compounds but also results in accurate mass measurement for those interferences. The latter feature takes the MP mode beyond the target mass analysis that GC/MS-SIM was originally designed for. This additional dimension of information is particularly useful for those complex and incompletely characterized matrices that are frequently encountered in environmental and biological sample analyses.  相似文献   

20.
A set of 10 fresh (unevaporated) gasoline samples from a single metropolitan area were differentiated based on a covariance mapping method combined with a t-test statistic. The covariance matrix for each sample was calculated from the retention time-ion abundance data set obtained by gas chromatography/mass spectrometry analysis. Distance metrics were calculated between the covariance matrices from replicate analyses of the same sample and between the replicate analyses of different samples. The distance metric for the same-sample comparisons were shown to constitute a population significantly different from the distance metric for the different-sample comparisons. A power analysis was performed to estimate the number of analyses needed to discriminate between two samples while maintaining a probability of type II error, beta, below 1%, e.g., a test power greater than 99%. Triplicate analyses of two gasoline samples was shown to be sufficient to discriminate between the two using a t-test, while keeping beta<0.01 at a significance level, alpha, of 0.05. Analysis of the 45 possible pairwise comparisons between samples found that 100% of the samples were statistically distinguishable, and no type II errors occurred. Blind tests were conducted wherein 2 of the 10 gasoline samples where presented as unknowns. One of the unknowns was found to be indistinguishable from the original source, and one unknown was determined to be statistically different from the original source, constituting a type I error. The effects of evaporation on sample comparison are not addressed in this paper. The results from this study demonstrate a statistically acceptable method of physical evidence comparison in forensic casework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号