首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this work is the assessment of the efficiency of the crack tip opening angle (CTOA) with respect to the transferability from one geometry to another, in particular the transferability obtained from Kahn tear tests to M(T) panels. The load-displacement behaviour recorded during a Kahn tear test was reproduced by means of finite element analysis using a variable CTOA as a function of crack length. The CTOA extracted from Kahn tests has then been used to simulate the R-curve of M(T) panels with different widths. Experiments and simulations were run first on a 6013-T6 aluminium alloy and then also on butt, friction stir welded butt joints of the same material.  相似文献   

2.
Crack tunneling has been commonly observed in crack growth experiments on specimens made of ductile materials such as steel and aluminum alloys. The objective of this study is to investigate the crack tunneling phenomenon and study the effects of crack tunneling on the distribution of several mechanics parameters controlling ductile fracture. Three-dimensional (3D) elastic-plastic finite element analyses of stable tearing experiments involving tunneling fracture are carried out. Two model problems based on stable tearing experiments are considered. The first model problem involves a plate specimen containing a stationary, single-edge crack with a straight or tunneled crack front, under remote mode I loading. In the numerical analyses, the crack tip opening displacement, the von Mises effective stress, the mean stress, the stress constraint and the effective plastic strain around straight and tunneled crack fronts are obtained and compared. It is found that crack tunneling produces significant changes in the stress and deformation fields around the crack front. The second model problem involves a specimen containing a stably growing single-edge crack with a straight or tunneled crack front, under remote mode I loading. Crack growth events with a straight or tunneled crack front are simulated using the finite element method, and the effect of crack tunneling on the prediction of the load-crack-extension response based on a CTOD fracture criterion is investigated.  相似文献   

3.
Stable crack growth in ductile polymers   总被引:2,自引:0,他引:2  
Growth of a crack in ductile polymers (polyarylate, PTFE, and PU/PMMA blends) was studied. The crack growth was described assuming that local yielding in the crack tip is similar to large-scale shear yielding in rigid-plastic materials. Crack growth was stable, and a wedge shaped crack tip was formed. The crack tip opening displacement and the crack extension in the initial stage of the crack growth were proportional to the square of the strain up to 11% elongation. Dugdale’s equation was modified to describe the magnitude of the crack tip opening. In PA, a yield subzone near the crack tip was observed. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

4.
5.
Ductile thin-sheet structures, such as fuselage skin or automobile panels, are widely used in engineering applications. These structures often-times are subjected to mixed mode (I/II/III) loading, with stable crack growth observed prior to final fracture. To characterize specific specimen deformations during stable tearing, a series of mixed-mode I/III stable tearing experiments with highly ductile thin-sheet aluminum alloy and steel specimens have been measured by using three-dimensional digital image correlation (3D-DIC). Measurements include (a) specimen’s deformed shape and 3D full-field surface displacement fields, (b) load-crack extension response and (c) crack path during stable tearing, (d) angular and radial distributions of strains and (e) the mixed mode crack-opening displacement (COD, measured at 1-mm from crack tip along crack surface) variation as a function of crack extension. Results indicate that for both aluminum alloy and steel at all mixed-mode I/III loading conditions (Φ = 30°, 60° and 90°), the crack tip fields have almost identical angular and radial polar strain distributions. The mixed mode I/III fields were different from those observed for the nominal Mode I loading case (Φ = 0°). The effect of the Mode III loading component is that it lowers the magnitude of the dominant strain component ε θθ ahead of the growing crack tip and increases the singularity of the strain as compared with that in the mode I case. In addition, measurements indicate that the average mixed mode I/III stable COD for AL6061-T6 (GM6208 steel) is 4×(3×) greater than the average Mode I stable COD.  相似文献   

6.
Rate-sensitive and triaxiality-dependent cohesive elements are used to simulate crack growth under quasi-static and dynamic loading conditions. The simulations are performed for a middle-cracked tension M(T) specimen made of an aluminum alloy (6XXX series). To consider the effect of stress triaxiality and strain rate on the cohesive properties, a single plane strain element obeying the constitutive equations of a rate-dependent Gurson type model has been used. The single element is loaded under various stress biaxiality ratios and strain rates and the obtained stress-displacement curves are considered as traction separation law for the cohesive elements. These curves are used for analyzing the aluminum M(T) specimen. The qualitative effects of constraint, strain rate, inertia and stress waves on the energy absorption of the specimen and crack growth are discussed.  相似文献   

7.
The modified Mohr–Coulomb and the extended Cockcroft–Latham fracture criteria are used in explicit finite-element (FE) simulations of ductile crack propagation in a dual-phase steel sheet. The sheet is discretized using tri-linear solid elements and the element erosion technique is used to model the crack propagation. The numerical results are compared to quasi-static experiments conducted with five types of specimens (uniaxial tension, plane-strain tension, in-plane shear, 45° and 90° modified Arcan) made from a 2 mm thick sheet of the dual-phase steel Docol 600DL. The rate-dependent J 2 flow theory with isotropic hardening was used in the simulations. The predicted crack paths and the force–displacement curves were quite similar in the simulations with the different fracture criteria. Except for the 45° modified Arcan test, the predicted crack paths were in good agreement with the experimental findings. The effect of using a high-exponent yield function in the prediction of the crack path was also investigated, and it was found that this improved the crack path prediction for the 45° modified Arcan test. In simulations carried out on FE models with a denser spatial discretization, the prediction of localized necking and crack propagation was in better accordance with the experimental observations. In four out of five specimen geometries, a through-thickness shear fracture was observed in the experiments. By introducing strain softening in the material model and applying a dense spatial discretization, the slant fracture mode was captured in the numerical models. This did not give a significant change in the global behaviour as represented by the force–displacement curves.  相似文献   

8.
In this work, a coupled finite element–element free Galerkin approach has been used to model crack growth in ductile materials under monotonic and cyclic loads. In this approach, a small discontinuous domain near crack is modelled by EFG method, whereas the rest of the domain is modelled by FEM to exploit the advantages of both the methods. A ramp function has been used in the transition region to maintain the continuity between FE and EFG domains. Two plasticity models (GTN and von‐Mises) and three hardening rules (isotropic, kinematic and mixed) have been used to model the nonlinear material behaviour. Four different problems, i.e. single edge notched tension specimen, double edge notched tension specimen, compact tension specimen and three‐point bend specimen, are solved under plane strain condition using J–R curve approach. Finally, a CT specimen problem is also solved by coupled approach using three hardening rules and two plasticity models under cyclic loading.  相似文献   

9.
An extensive study of the phenomena appearing during crack propagation in ductile polycarbonate during the phase of stable crack growth (SCG) was undertaken. It has been shown that this phase starts at a critical loading step where a blunted crack was established and a damaged ligament in front of the crack tip developed and stabilized. This phase may be divided into two successive steps. The first is characterized by the step by step advancement of the blunted crack by exhausting respective parts of the damaged ligament so that the overall length of crack and ligament remains stationary. In this step the crack tip opening angle is increasing and attains its final value of the order of 55 degrees.This progressive crack growth, at the expense of the damaged ligament, is replaced by the proper steady crack growth where the crack advances steadily under almost constant external load and under constant CTOA up to a limit where catastrophic fracture occurs. The influence of the in-plane and transverse constraint factors was studied and important results concerning the mechanisms of fracture under predominating plane-stress or plane-strain conditions were established.  相似文献   

10.
For prediction of the fatigue crack growth (FCG) behavior under cyclic compression, a plasticity-corrected stress intensity factor (PC-SIF) range ΔKpc is proposed on the basis of plastic zone toughening theory. The FCG behaviors in cyclic compression, and the effects of load ratio, preloading and mean load, are well predicted by this new mechanical driving force parameter. Comparisons with experimental data showed that the proposed PC-SIF range ΔKpc is an effective single mechanical parameter capable of describing the FCG behavior under different cyclic compressive loading conditions.  相似文献   

11.
Creep crack growth in two of the commonly used creep-resistant ferritic steels was investigated. Both steels were tested in the as-processed condition and after many years of service in electric power plants. The test temerature was 540°C (in one case also 500°C and 565°C) and test durations ranged from a few days to a year. In 1/2Cr-1/2Mo-1/4V steel, crack growth occurred intergranularly by grain boundary cavitation, while 21/4Cr-1Mo steel also exhibited transgranular growth. The deformation behavior of CT specimens was analyzed in detail. It was found that for typically 20 percent of the lifetime, the instantaneous elastic-plastic strains and, more importantly, primary creep determine the deformation response. The evolution of the crack length parallels that of the load-line deflection: Initially, the crack grows relatively fast, decelerates until a steady growth rate is reached, and finally accelerates due to the increasing stress intensity at the longer crack. This behavior can be described reasonably accurately by models for creep crack growth taking into account the elastic-plastic transient and primary creep. It is demonstrated that the C t parameter correlates crack growth rates during the transients, whereas C * becomes the appropriate load parameter during steady-state creep. However, C * fails to describe crack growth in single-edge notched tension specimens with shallow cracks. This is tentatively ascribed to excessive crack-tip blunting and other geometry changes. Unloading and reloading frequently leads to accelerated crack growth.
Résumé On a étudié la croissance de fissures de fluage dans deux des aciers ferritiques résistant au fluage les plus communément utilisés. Les deux matériaux ont été essayés à l'état de livraison et après plusiers années de service en centrale électrique. La température d'essais était de 540°C (avec, dans un cas, des valeurs de 500°C et 565°C) et la durée d'essais variait de quelques jours à une année. On a constaté que dans l'acier au 1/2 Cr-1/2Mo-1/4V, la fissure s'est propagée entre les grains par un phénomène de cavitation aux joints de grain. Par contre, l'acier 2 1/4 Cr 1 Mo a fait également état d'une croissance transgranulaire de la fissure. En analysant dans le détail le comportement à la déformation d'éprouvettes CT, on a trouvé que, sur une période de temps typiquement égale à 20% de la durée de vie, la réponse à la déformation est déterminée par les déformations élasto-plastiques instantanées, et, surtout, par le fluage primaire. La longueur de la fissure suit une évolution parallèle à la courbe d'évolution de la charge. A l'origine, la croissance de la fissure est relativement rapide, puis elle ralentit jusqu'à atteindre une vitesse constante, pour enfin accélérer à nouveau en raison l'accroissement de l'intensité de la contrainte agissant sur une fissure de plus en plus large. Un tel comportement peut être décrit de manière raisonnablement précise par des modèles de croissance des fissures de fluage qui prennent en compte la transitoire élasto-plastique et la fluage primaire. On dèmontre que le paramètre Ct est en correlation avec les vitesses de croissance de la fissure durant les transitoires, et que l'intégrale C* devient le paramètre de charge le plus approprié au cours du fluage stable. Toutefois, C* ne peut décrire la croissance d'une fissure dans une éprouvette à simple entaille latérale comportant des fissures peu profondes. On pense que cela est dû à un arrondissement excessif de l'extrémité des fissures et à d'autres modifications géométriques. On constate également que la croissance d'une fissure s'accélère lorsque l'on procède fréquemment à un déchargement suivi d'une remise en charge.
  相似文献   

12.
This work describes the formulation and application of a 3-D, interface-cohesive finite element model to predict quasi-static, ductile crack extension in thin aluminum panels for mode I loading and growth. The fracture model comprises an initially zero thickness, interface element with constitutive response described by a nonlinear traction-separation relationship. Conventional volumetric finite elements model the nonlinear (elastic-plastic) response of background (bulk) material. The interface-cohesive elements undergo gradual decohesion between faces of the volumetric elements to create new traction free crack faces. The paper describes applications of the computational model to simulate crack extension in C(T) and M(T) panels made of a 2.3 mm thick, Al 2024-T3 alloy tested as part of the NASA-Langley Aging Aircraft program. Parameters of the cohesive fracture model (peak opening traction and local work of separation) are calibrated using measured load vs. outside surface crack extensions of high constraint (T-stress > 0) C(T) specimens. Analyses of low constraint M(T) specimens, having widths of 300 and 600 mm and various a/W ratios, demonstrate the capabilities of the calibrated model to predict measured loads and outside surface crack extensions. The models capture accurately the strong 3-D effects leading to various degrees of crack front tunneling in the C(T) and M(T) specimens. The predicted crack growth response shows rapid convergence with through-thickness mesh refinement. Adaptive load increment procedures to control the rate of decohesion in the interface elements leads to stable, rapidly converging iterations in the globally implicit solution procedures.  相似文献   

13.
It has been previously shown that at relatively high test temperatures/slow test rates crack propagation in thermosetting epoxy polymers occurs in a stable ductile manner. The present paper proposes a mechanism for this type of crack growth based upon a meniscus instability model which both qualitatively and quantitatively accounts for the experimental observations.  相似文献   

14.
Effects of microvoid nucleation and growth on the stress and strain fields near a crack tip are studied by employing the Gurson's constitutive model of porous plastic solids and by using a finite element method suitably formulated to admit large geometry change. It is shown that microvoids nucleate and grow rapidly in the region at a distance less than the blunted tip diameter away from the crack tip and have a great influence on the stress fields therein. Effects of a large void near a crack tip on crack initiation are also investigated by taking the shear localization into account. The critical value of the crack tip opening displacement predicted by the present investigation is shown to coincide with the published experimental data.
Résumé On examine les effets d'une nucléation et d'une croissance de micro-cavités sur les champs de contrainte et de déformation au voisinage de l'extrémité d'une fissure en recourant au modèle constitutif de Gurson pour les solides poreux plastiques, et en utilisant une méthode par éléments finis formulée de manière à admettre des modifications importantes de géométrie. On montre que les microcavités coalescent et croissent rapidement en avant de la fissure sur une distance inférieure au diamètre qu'atteint l'arrondissement de la fissure et qu'elles ont une grande influence sur le champ de contrainte qui règne dans cette région. On étudie également l'influence d'une grande lacune au voisinage de l'extrémité d'une fissure sur l'amorçage de la cassure, en prenant en compte le cisaillement local. On montre que la valeur critique du COD à l'extrémité de la fissure telle que prédite par la présente étude coïncide avec les données expérimentales de la littérature.
  相似文献   

15.
An overview of our research performed during the last 15 years is presented to improve the understanding of fatigue crack propagation mechanisms. The focus is devoted to ductile metals and the material separation process at low and intermedial crack propagation rates. The effect of environment, short cracks, small‐scale yielding as well as large‐scale yielding are considered. It will be shown that the dominant intrinsic propagation mechanism in ductile metallic materials is the formation of new surface due to blunting and the re‐sharpening during unloading. This process is affected by the environment, however, not by the length of the crack and it is independent of large‐ or small‐scale yielding.  相似文献   

16.
Two-dimensional, plane strain, finite element analyses of strength-mismatched welded joints have been performed using the modified boundary layer formulation. The welds were idealized as two-material joints with the material interface running parallel to the crack, which was embedded in the weld material. The Rousselier ductile damage model was employed within the weld material to simulate crack extension due to the growth and coalescence of microvoids. By analysing models with different levels of material mismatching, weld dimensions and applied T -stress levels, it was possible to analyse the effects of crack tip constraint due to both material mismatching and specimen geometry on the fracture resistance of the weld material.
The results show that material strength overmatching (where the weld material is stronger than the base material) reduces the level of constraint ahead of the crack, which can increase the resistance to fracture of the weld material. Conversely, material strength undermatching increases crack tip constraint, reducing the fracture resistance of the joint. By employing estimates for the crack tip constraint levels, Q M , based on the applied load, level of material mismatching and weld region thickness, it has been possible to 'order' the J– resistance curves of overmatched joints by generating a family of J–Q M loci which describe the effects of constraint on the fracture resistance of the weld material. However, it is shown that the Q M-stress parameter is not capable of describing the effect of material strength undermatching on the fracture resistance of a joint, which can be much lower than that obtained from a high-constraint homogeneous specimen of weld material.  相似文献   

17.
Ductile crack growth is analyzed by discrete representation of the voids growing near a blunting crack-tip. Coalescence of the nearest void with the crack-tip is modeled, followed by the subsequent coalescence of other discretely represented voids with the newly formed crack-tip. Necking of the ligaments between the crack-tip and a void or between voids involves the development of very large strains, which are included in the model by using remeshing at several stages of the plastic deformation. The material is here described by standard isotropic hardening Mises theory. For a very small void volume fraction the crack-tip tends to interact with one void at a time, while larger void volume fractions lead to simultaneous interaction of multiple voids on the plane ahead of the crack-tip. In some cases a change from one of these mechanisms to the other is seen during growth through the many voids represented here. First uniformly spaced voids of equal size are considered, but also a few computations for a random distribution of the void spacings or of the void sizes are carried out.  相似文献   

18.
Wnuk's application of the Dugdale-Bilby-Cottrell-Swinden model to stable crack growth in ductile materials, is extended to incorporate a simplified idealization of the fracture process zone. The results, when considered with Rice and Sorensen's recent analytical and finite element results, provide further support for the use of crack tip opening angle as a viable characterising parameter for plane strain stable crack growth.
Résumé L'application faite par Wnuk du modèle de Dugdale-Bilby-Cottrell et Swinden relatif à la croissance stable d'une fissure dans un matériau ductile est étendue de manière à incorporer dans une idéalisation simplifiée la zône où se produit la rupture. Les résultats, lorsqu'ils sont examinés à la lueur des résultats analytiques récents ainsi que des résultats par éléments finis obtenus par Rice et Sorensen, fournissent un support complémentaire à l'utilisation de l'angle d'ouverture de l'extrémité d'une fissure en tant que paramètre caractéristique pour décrire la croissance stable d'une fissure en état plan de déformation.
  相似文献   

19.
It is well known that residual stresses influence the ductile fracture behaviour. In this paper, a numerical study was performed to assess the effect of residual stresses on ductile crack growth resistance of a typical pipeline steel. A modified boundary layer model was employed for the analysis under plane strain, Mode I loading condition. The residual stress fields were introduced into the finite element model by the eigenstrain method. A sharp crack was embedded in the center of the weld region. The complete Gurson model has been applied to simulate the ductile fracture by microvoid nucleation, growth and coalescence. Results show that tensile residual stresses can significantly reduce the crack growth resistance when the crack growth is small compared with the length scale of the tensile residual stress field. With the crack growth, the effect of residual stresses on the crack growth resistance tends to diminish. The effect of residual stress on ductile crack growth resistance seems independent of the size of geometrically similar welds. When normalized by the weld zone size, the ductile crack growth resistance collapses into one curve, which can be used to assess the structural integrity and evaluate the effect of residual stresses. It has also been found that the effect of residual stresses on crack growth resistance depends on the initial void volume fraction f0, hardening exponent n and T-stress.  相似文献   

20.
The addition of a dispersed ductile phase in a brittle ceramic can result in an increased fracture toughness, mainly due to plastic dissipation during crack bridging. The large elastic-plastic deformations of a ductile particle intercepted by a brittle matrix crack are here analysed numerically with main focus on the effect of the growth of a single void in the particle centre, as has been observed experimentally. Particle-matrix debonding is incorporated in the numerical model, represented in terms of a cohesive zone formulation, and so is the effect of initial residual stresses induced by the thermal contraction mismatch during cooling from the processing temperature. The bridging behaviour is studied for different combinations of material parameters, and the void growth behaviour is related to previous results for cavitation instabilities in elastic-plastic solids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号